Islet transplantation for treatment of diabetes is limited by availability of donor islets and requirements for immunosuppression. Stem cell-derived islets might circumvent these issues. SC-islets effectively control glucose metabolism post transplantation, but do not yet achieve full function with current published differentiation protocols.
View Article and Find Full Text PDFImmunological protection of transplanted stem cell-derived islet (SC-islet) cells is yet to be achieved without chronic immunosuppression or encapsulation. Existing genetic engineering approaches to produce immune-evasive SC-islet cells have so far shown variable results. Here, we show that targeting human leukocyte antigens (HLAs) and PD-L1 alone does not sufficiently protect SC-islet cells from xenograft (xeno)- or allograft (allo)-rejection.
View Article and Find Full Text PDFStem cell-derived beta cells (SC-β-cells) engrafted into mice serve as a pre-clinical model of diabetes. It is helpful to recover viable β cells following transplantation to perform tests on the graft. We developed a protocol to retrieve and purify a sufficient number of live β cells from mice following long-term human SC-β-cell engraftment.
View Article and Find Full Text PDFStem cell-derived β (SC-β) cells could provide unlimited human β cells toward a curative diabetes treatment. Differentiation of SC-β cells yields transplantable islets that secrete insulin in response to glucose challenges. Following transplantation into mice, SC-β cell function is comparable to human islets, but the magnitude and consistency of response in vitro are less robust than observed in cadaveric islets.
View Article and Find Full Text PDFThe beta (β)-cell mass formed during embryogenesis is amplified by cell replication during fetal and early postnatal development. Thereafter, β cells become functionally mature, and their mass is maintained by a low rate of replication. For those few β cells that replicate in adult life, it is not known how replication is initiated nor whether this occurs in a specialized subset of β cells.
View Article and Find Full Text PDFIn vitro differentiation of human stem cells can produce pancreatic β-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro β-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to β-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells.
View Article and Find Full Text PDFPolymorphic HLAs form the primary immune barrier to cell therapy. In addition, innate immune surveillance impacts cell engraftment, yet a strategy to control both, adaptive and innate immunity, is lacking. Here we employed multiplex genome editing to specifically ablate the expression of the highly polymorphic HLA-A/-B/-C and HLA class II in human pluripotent stem cells.
View Article and Find Full Text PDFStem cell-derived insulin-producing beta cells (SC-β) offer an inexhaustible supply of functional β cells for cell replacement therapies and disease modeling for diabetes. While successful directed differentiation protocols for this cell type have been described, the mechanisms controlling its differentiation and function are not fully understood. Here we report that the Hippo pathway controls the proliferation and specification of pancreatic progenitors into the endocrine lineage.
View Article and Find Full Text PDF