Publications by authors named "Jennifer H Hill"

Microbiota composition regulates colitis severity, yet the innate immune mechanisms that control commensal communities and prevent disease remain unclear. We show that the innate immune receptor, Clec12a, impacts colitis severity by regulating microbiota composition. Transplantation of microbiota from a Clec12a animal is sufficient to worsen colitis in wild-type mice.

View Article and Find Full Text PDF
Article Synopsis
  • The resident microbiota, which includes a variety of microorganisms, play a crucial role in maintaining a healthy organism, with bacteria traditionally being the main focus of study.
  • Recent research highlights the importance of fungi, or the mycobiome, in mammalian health, showing that they affect biological processes despite being less abundant than bacteria.
  • This review aims to summarize the characteristics and influences on gut mycobiome composition, its health benefits, and to encourage future research that could lead to new therapeutic options.
View Article and Find Full Text PDF

Regulation of the microbiota is critical to intestinal health yet the mechanisms employed by innate immunity remain unclear. Here we show that mice deficient in the C-Type-lectin receptor, Clec12a developed severe colitis, which was dependent on the microbiota. Fecal-microbiota-transplantation (FMT) studies into germfree mice revealed a colitogenic microbiota formed within Clec12a mice that was marked by expansion of the gram-positive organism, .

View Article and Find Full Text PDF

Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets.

View Article and Find Full Text PDF

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized.

View Article and Find Full Text PDF

Do ancient microbial irritants offer early life protection against diabetes?

View Article and Find Full Text PDF

Microbes can play both pathogenic and commensal roles, and it is common to label them as either detrimental or beneficial. However, the lines between good and bad can be blurred. This graphical summary attempts to illustrate the complexity of host-microbe interactions, with outcomes for human health being highly context specific.

View Article and Find Full Text PDF

Resident microbes play important roles in the development of the gastrointestinal tract, but their influence on other digestive organs is less well explored. Using the gnotobiotic zebrafish, we discovered that the normal expansion of the pancreatic β cell population during early larval development requires the intestinal microbiota and that specific bacterial members can restore normal β cell numbers. These bacteria share a gene that encodes a previously undescribed protein, named herein BefA (β Cell Expansion Factor A), which is sufficient to induce β cell proliferation in developing zebrafish larvae.

View Article and Find Full Text PDF