The vast majority of drug product candidates in early development fail to progress to clinics. This is true for products containing nanomaterials just as for other types of pharmaceuticals. Early development pathways should therefore place high priority on experiments that help candidates fail faster and less expensively.
View Article and Find Full Text PDFUnderstanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region.
View Article and Find Full Text PDFAims: Many nanoparticles interfere with traditional tests to quantify endotoxin. The aim of this study was to compare the performance of limulus amoebocyte lysate (LAL) formats on clinical-grade nanoformulations, to determine whether there were disparate results among formats and to test the applicability of an alternative bioassay (the macrophage activation test [MAT]) for resolving discrepancies, if observed.
Materials & Methods: Clinical-grade nanoformulations were tested using turbidimetric, gel-clot and chromogenic LAL.
The Nanotechnology Characterization Laboratory's (NCL) unique set-up has allowed our lab to handle and test a variety of nanoparticle platforms intended for the delivery of cancer therapeutics and/or imaging contrast agents. Over the last six years, the NCL has characterized more than 250 different nanomaterials from more than 75 different investigators. These submitted nanomaterials stem from a range of backgrounds and experiences, including government, academia and industry.
View Article and Find Full Text PDF