Publications by authors named "Jennifer Gin"

Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase, which acts on the substrate CHMS. We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP.

View Article and Find Full Text PDF
Article Synopsis
  • Sunscreen has a long history of use for skin protection, but modern ingredients like oxybenzone and ZnO raise health and environmental concerns.
  • This study focuses on creating a microbial platform using Pseudomonas putida to produce shinorine, a compound that absorbs UV light and has anti-aging benefits.
  • Researchers used advanced techniques such as CRISPRi, biosynthetic pathway optimization, and amino acid feeding experiments to enhance shinorine production and identify key factors influencing its yield.
View Article and Find Full Text PDF
Article Synopsis
  • * Pseudomonas putida has been identified as a promising microorganism for producing isoprenol due to its ability to utilize low-cost plant biomass.
  • * Researchers have successfully engineered P. putida using computational models to optimize the pathway for isoprenol production, achieving a titer of 3.5 g/L, which highlights the potential for sustainable biofuel production from renewable sources.
View Article and Find Full Text PDF

have emerged as promising biocatalysts for the conversion of sugars and aromatic compounds obtained from lignocellulosic biomass. Understanding the role of carbon catabolite repression (CCR) in these strains is critical to optimize biomass conversion to fuels and chemicals. The CCR functioning in M2, a strain capable of consuming both hexose and pentose sugars as well as aromatic compounds, was investigated by cultivation experiments, proteomics, and CRISPRi-based gene repression.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to make more of a special substance called indigoidine using a bacteria called Pseudomonas putida.
  • They used a method that links the bacteria's growth to how much indigoidine it makes, testing over 4,100 possible ways to do this.
  • After many experiments, they created a version of the bacteria that makes a lot of indigoidine using a plant chemical called para-coumarate, showing that their approach works well for different settings and products.
View Article and Find Full Text PDF

Plate-based proteomic sample preparation offers a solution to the large sample throughput demands in the biotechnology field where hundreds or thousands of engineered microbes are constructed for testing is routine. Meanwhile, sample preparation methods that work efficiently on broader microbial groups are desirable for new applications of proteomics in other fields, such as microbial communities. Here, we detail a step-by-step protocol that consists of cell lysis in an alkaline chemical buffer (NaOH/SDS) followed by protein precipitation with high-ionic strength acetone in 96-well format.

View Article and Find Full Text PDF

Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature.

View Article and Find Full Text PDF

Manual proteomic sample preparation methods limit sample throughput and often lead to poor data quality when thousands of samples must be analyzed. Automated liquid handler systems are increasingly used to overcome these issues for many of the sample preparation steps. Here, we detail a step-by-step protocol to prepare samples for bottom-up proteomic analysis for Gram-negative bacterial and fungal cells.

View Article and Find Full Text PDF

Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304.

View Article and Find Full Text PDF

Lignocellulosic biomass is composed of three major biopolymers: cellulose, hemicellulose and lignin. Analytical tools capable of quickly detecting both glycan and lignin deconstruction are needed to support the development and characterization of efficient enzymes/enzyme cocktails. Previously we have described nanostructure-initiator mass spectrometry-based assays for the analysis of glycosyl hydrolase and most recently an assay for lignin modifying enzymes.

View Article and Find Full Text PDF

Nonribosomal peptide synthetase (NRPS) oxidase (Ox) domains oxidize protein-bound intermediates to install crucial structural motifs in bioactive natural products. The mechanism of this domain remains elusive. Here, by studying indigoidine synthetase, a single-module NRPS involved in the biosynthesis of indigoidine and several other bacterial secondary metabolites, we demonstrate that its Ox domain utilizes an active-site base residue, tyrosine 665, to deprotonate a protein-bound l-glutaminyl residue.

View Article and Find Full Text PDF

is a saprophytic bacterium with robust metabolisms and strong solvent tolerance making it an attractive host for metabolic engineering and bioremediation. Due to its diverse carbon metabolisms, its genome encodes an array of proteins and enzymes that can be readily applied to produce valuable products. In this work we sought to identify design principles and bottlenecks in the production of type III polyketide synthase (T3PKS)-derived compounds in .

View Article and Find Full Text PDF

To accelerate the shift to bio-based production and overcome complicated functional implementation of natural and artificial biosynthetic pathways to industry relevant organisms, development of new, versatile, bio-based production platforms is required. Here we present a novel yeast-based platform for biosynthesis of bacterial aromatic polyketides. The platform is based on a synthetic polyketide synthase system enabling a first demonstration of bacterial aromatic polyketide biosynthesis in a eukaryotic host.

View Article and Find Full Text PDF

Terminal alkenes are easily derivatized, making them desirable functional group targets for polyketide synthase (PKS) engineering. However, they are rarely encountered in natural PKS systems. One mechanism for terminal alkene formation in PKSs is through the activity of an acyl-CoA dehydrogenase (ACAD).

View Article and Find Full Text PDF

Lepidoptera (butterflies and moths) make the six-carbon compounds homoisopentenyl pyrophosphate (HIPP) and homodimethylallyl pyrophosphate (HDMAPP) that are incorporated into 16, 17, and 18 carbon farnesyl pyrophosphate (FPP) analogues. In this work we heterologously expressed the lepidopteran modified mevalonate pathway, a propionyl-CoA ligase, and terpene cyclases in to produce several novel terpenes containing 16 carbons. Changing the terpene cyclase generated different novel terpene product profiles.

View Article and Find Full Text PDF

Mass spectrometry-based quantitative proteomic analysis has proven valuable for clinical and biotechnology-related research and development. Improvements in sensitivity, resolution, and robustness of mass analyzers have also added value. However, manual sample preparation protocols are often a bottleneck for sample throughput and can lead to poor reproducibility, especially for applications where thousands of samples per month must be analyzed.

View Article and Find Full Text PDF

The Design-Build-Test-Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, we report on implementation of two DBTL cycles to optimize 1-dodecanol production from glucose using 60 engineered Escherichia coli MG1655 strains. The first DBTL cycle employed a simple strategy to learn efficiently from a relatively small number of strains (36), wherein only the choice of ribosome-binding sites and an acyl-ACP/acyl-CoA reductase were modulated in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507, Maqu_2220, or Acr1), and an acyl-CoA synthetase (FadD).

View Article and Find Full Text PDF

Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in remain unresolved. To establish these biochemical links, we leveraged andom arcode rasposon uencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both l- and d-lysine metabolism. We first describe three pathway enzymes that catabolize l-2-aminoadipate (l-2AA) to 2-ketoglutarate (2KG), connecting d-lysine to the TCA cycle.

View Article and Find Full Text PDF

Recent improvements in the speed and sensitivity of liquid chromatography-mass spectrometry systems have driven significant progress toward system-wide characterization of the proteome of many species. These efforts create large proteomic datasets that provide insight into biological processes and identify diagnostic proteins whose abundance changes significantly under different experimental conditions. Yet, these system-wide experiments are typically the starting point for hypothesis-driven, follow-up experiments to elucidate the extent of the phenomenon or the utility of the diagnostic marker, wherein many samples must be analyzed.

View Article and Find Full Text PDF

Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. Although β-amino acid loading in the fluvirucin B polyketide pathway was proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. Here we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B biosynthesis.

View Article and Find Full Text PDF

Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing.

View Article and Find Full Text PDF

C metabolic flux analysis (C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype.

View Article and Find Full Text PDF

Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in . We combined C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts.

View Article and Find Full Text PDF

Group A Streptococcus (GAS) is a leading cause of infection-related mortality in humans. All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has been attributed to this conserved antigen.

View Article and Find Full Text PDF