Publications by authors named "Jennifer Gentry-Shields"

Hand hygiene interventions are critical for reducing farmworker hand contamination and preventing the spread of produce-associated illness. Hand hygiene effectiveness may be produce-commodity specific, which could influence implementation strategies. This study's goal was to determine if produce commodity influences the ability of handwashing with soap and water or two-step alcohol-based hand sanitizer (ABHS) interventions to reduce soil and bacteria on farmworker hands.

View Article and Find Full Text PDF

North Carolina is the second leading state in pork production in the United States, with over 10 million swine. Swine manure in NC is typically collected and stored in open-pit lagoons before the liquid waste is sprayed onto agricultural fields for disposal. Components of this waste may be able to impact surface water quality with the potential for human exposure.

View Article and Find Full Text PDF

Human noroviruses (HuNoV) are a leading cause of foodborne disease and are known to be environmentally persistent. Foods usually become contaminated by contact with fecal material, both on hands and on surfaces. Emerging evidence suggests that HuNoVs are also shed and potentially aerosolized during projectile vomiting, resulting in another source of contamination.

View Article and Find Full Text PDF

In recent decades, fresh and minimally processed produce items have been associated with an increasing proportion of food-borne illnesses. Most pathogens associated with fresh produce are enteric (fecal) in origin, and contamination can occur anywhere along the farm-to-fork chain. Microbial source tracking (MST) is a tool developed in the environmental microbiology field to identify and quantify the dominant source(s) of fecal contamination.

View Article and Find Full Text PDF

There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces.

View Article and Find Full Text PDF

A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman(®), HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources.

View Article and Find Full Text PDF

An inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination.

View Article and Find Full Text PDF

Assays that utilize PCR offer powerful tools to detect pathogens and other microorganisms in environmental samples. However, PCR inhibitors present in nucleic acid extractions can increase a sample's limit of detection, skew calculated marker concentrations, or cause false-negative results. It would be advantageous to predict which samples contain various types and levels of PCR inhibitors, especially the humic and fulvic acids that are frequently cited as PCR inhibitors in natural water samples.

View Article and Find Full Text PDF

Enteric viruses are etiological agents of waterborne disease that may be detected using molecular techniques such as PCR. However, processing water samples in preparation for PCR typically involves concentration of samples and extraction of nucleic acids, steps that have low and variable recovery efficiencies. This study evaluated a plant virus, turnip crinkle virus (TCV), for its ability to serve as a process control for human enteroviruses during concentration and extraction procedures.

View Article and Find Full Text PDF

Identification of the source of fecal pollution is becoming a priority for states and territories in the U.S. in order to meet water quality standards and to develop and implement total maximum daily loads.

View Article and Find Full Text PDF