Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE-respiring representatives of the genus, uncovered the genetic inactivation of a two-component system (TCS) in the OHR gene region of the natural mutants.
View Article and Find Full Text PDFReductive dehalogenation of organohalides is carried out by organohalide-respiring bacteria (OHRB) in anoxic environments. The tetrachloroethene (PCE)-respiring Epsilonproteobacterium Sulfurospirillum multivorans is one of few OHRB able to respire oxygen. Therefore, we investigated the organism's capacity to dehalogenate PCE in the presence of oxygen, which would broaden the applicability to use S.
View Article and Find Full Text PDFSulfurospirillum multivorans is a free-living, physiologically versatile Epsilonproteobacterium able to couple the reductive dehalogenation of chlorinated and brominated ethenes to growth (organohalide respiration). We present proteomic data of S. multivorans grown with different electron donors (formate or pyruvate) and electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]).
View Article and Find Full Text PDFOrganohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region.
View Article and Find Full Text PDFSulfurospirillum multivorans, a free-living ε-proteobacterium, is among the best studied organisms capable of organohalide respiration. It is able to use several halogenated ethenes as terminal electron acceptor. In this report, the complete genome sequence of S.
View Article and Find Full Text PDF