Soluble guanylate cyclase (sGC), a key enzyme of the nitric oxide signaling pathway, is formed as a heterodimer by various isoforms of its α and β subunit. GUCY1A3, encoding the α1 subunit, was identified as a risk gene for coronary artery disease and myocardial infarction, but its specific contribution to atherosclerosis remains unclear. This study sought to decipher the role of Gucy1a3 in atherosclerosis in mice.
View Article and Find Full Text PDFWe performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 × 10⁻⁸ and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.
View Article and Find Full Text PDFAims: Recent genome-wide association (GWA) studies identified 10 chromosomal loci for coronary artery disease (CAD) or myocardial infarction (MI). However, these loci explain only a small proportion of the genetic variability of these pertinent diseases. We sought to identify additional CAD/MI loci by applying a three-stage approach.
View Article and Find Full Text PDFCompelling evidence suggests that Foxp3-expressing CD25(+)CD4(+) regulatory T cells (Treg) are generated within the thymus as a separate lineage. However, Foxp3(+)CD4(+) Treg can also be generated de novo in a TGF-beta-dependent process from naive T cells by TCR triggering. Recently, we have shown that naturally occurring, but not in vitro TGF-beta-induced Foxp3(+) Treg display stable Foxp3 expression that was associated with selective demethylation of an evolutionarily conserved element within the Foxp3 locus named TSDR (Treg-specific demethylated region).
View Article and Find Full Text PDFBackground: In order to further distinguish unique from general functions of connexin43, we have generated mice in which the coding region of connexin43 was replaced by that of connexin26.
Results: Heterozygous mothers showed impaired mammary gland development responsible for decreased lactation and early postnatal death of the pups which could be partially rescued by wild type foster mothers. Only about 17% of the homozygous connexin43 knock-in connexin26 mice instead of 25% expected according to Mendelian inheritance, were born and only 6% survived to day 21 post partum and longer.
Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4(+) regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity.
View Article and Find Full Text PDFThe scurfy mutant mouse strain suffers from a fatal lymphoproliferative disease leading to early death within 3-4 wk of age. A frame-shift mutation of the forkhead box transcription factor Foxp3 has been identified as the molecular cause of this multiorgan autoimmune disease. Foxp3 is a central control element in the development and function of regulatory T cells (T reg cells), which are necessary for the maintenance of self-tolerance.
View Article and Find Full Text PDF