Publications by authors named "Jennifer Fraterrigo"

Non-native invasive plants can promote their dominance in novel ecosystems by accelerating soil nutrient cycling via interactions with decomposer microbes. Changes in abiotic conditions associated with frequent or prolonged drought may disrupt these interactions, but the effects of disruption on invasive plant performance and the underpinning mechanisms are poorly understood. Here, we used rainout shelters in an experimental field setting to test the hypothesis that drought reduces invasive plant performance by reducing microbial metabolic activity, resulting in decreased nitrogen flow to plants.

View Article and Find Full Text PDF

As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework.

View Article and Find Full Text PDF

Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.To uncover potential differences in community-level trait responses to the resource gradient, we quantified the averages and variances of both abundance-weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δC) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.

View Article and Find Full Text PDF

Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear.

View Article and Find Full Text PDF

Modeling vector-borne diseases is best conducted when heterogeneity among interacting biotic and abiotic processes is captured. However, the successful integration of these complex processes is difficult, hindered by a lack of understanding of how these relationships influence disease transmission across varying scales. West Nile virus (WNV) is the most important mosquito-borne disease in the United States.

View Article and Find Full Text PDF

Artificial subsurface (tile) drainage systems can convey phosphorus (P) from agricultural fields to surface waters; however, controls of subsurface dissolved reactive P (DRP) losses at the sub-field scale are not fully understood. We characterized subsurface DRP loads and flow-weighted mean concentration (FWMC) from January 2015 through September 2017 to determine seasonal (growing vs. non-growing) patterns from 36 individually monitored plots across a farm under a corn (Zea mays L.

View Article and Find Full Text PDF

Altered ecosystem variability is an important ecological response to disturbance yet understanding of how various attributes of disturbance regimes affect ecosystem variability is limited. To improve the framework for understanding the disturbance regime attributes that affect ecosystem variability, we examine how the introduction of stochasticity to disturbance parameters (frequency, severity and extent) alters simulated recovery when compared to deterministic outcomes from a spatially explicit simulation model. We also examine the agreement between results from empirical studies and deterministic and stochastic configurations of the model.

View Article and Find Full Text PDF

Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum) enhances its rate of nitrogen (N) acquisition by outcompeting soil organic matter-degrading microbes for N, which in turn accelerates soil N and carbon (C) cycling.

View Article and Find Full Text PDF

Plant invasions can alter the quality and quantity of detrital and root-derived inputs entering a system, thereby influencing the activities of microbial decomposers and affecting the soil carbon cycle. The effect of these inputs on soil carbon storage is often conflicting, suggesting strong context dependency in the plant-decomposer relationship. Whether there is a generalizable pattern that explains this dependency remains relatively unexplored.

View Article and Find Full Text PDF

A hierarchical view of niche relations reconciles the scale-dependent effects of abiotic and biotic processes on species distribution patterns and underlies most current approaches to distribution modeling. A key prediction of this framework is that the effects of biotic interactions will be averaged out at macroscales - an idea termed the Eltonian noise hypothesis (ENH). We test this prediction by quantifying regional variation in local abiotic and biotic niche relations and assess the role of macroclimate in structuring biotic interactions, using a non-native invasive grass, Microstegium vimineum, in its introduced range.

View Article and Find Full Text PDF

Premise Of Study: Plant functional traits are commonly used as proxies for plant responses to environmental challenges, yet few studies have explored how functional trait distributions differ across gradients of land-use change. By comparing trait distributions in intact forests with those across land-use change gradients, we can improve our understanding of the ways land-use change alters the diversity and functioning of plant communities.

Methods: We examined how the variation and distribution of trait values for seven plant functional traits differ between reference natural forest and three types of land-use conversion (pasture, old-field, or "legacy" sites-regrowth following logging), landscape productivity (NPP) and vegetation strata (tree or non-tree "understory"), in a meta-analysis of studies from 15 landscapes across five continents.

View Article and Find Full Text PDF

Plant-soil interactions have been proposed as a causative mechanism explaining how invasive plant species impact ecosystem processes. We evaluate whether an invasive plant influences plant and soil-microbe acquisition of nitrogen to elucidate the mechanistic pathways by which invaders might alter N availability. Using a (15)N tracer, we quantify differences in nitrogen uptake and allocation in communities with and without Microstegium vimineum, a shade-tolerant, C(4) grass that is rapidly invading the understories of eastern US deciduous forests.

View Article and Find Full Text PDF

Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes.

View Article and Find Full Text PDF

Understanding how disturbance shapes the dynamics of ecological systems is of fundamental importance in ecology. One emerging approach to revealing and appreciating disturbance effects involves examining disturbance-driven changes in the variability of ecological responses. Variability is rarely employed as a response variable to assess the influence of disturbance, but recent studies indicate that it can be an extremely sensitive metric, capturing differences obscured by averaging and conveying important ecological information about underlying causal processes.

View Article and Find Full Text PDF

Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid profiles) and whether community composition was related to potential net nitrogen (N) mineralization rates in southern Appalachian (USA) forest stands abandoned from agriculture or logging and reforested >50 yr ago.

View Article and Find Full Text PDF