Wolbachia is a widespread maternally transmitted endosymbiotic bacteria with diverse phenotypic effects on its insect hosts, ranging from parasitic to mutualistic. Wolbachia commonly infects social insects, where it faces unique challenges associated with its host's caste-based reproductive division of labor and colony living. Here, we dissect the benefits and costs of Wolbachia infection on life-history traits of the invasive pharaoh ant, Monomorium pharaonis, which are relatively short lived and show natural variation in Wolbachia infection status between colonies.
View Article and Find Full Text PDFAnt colonies demonstrate a finely tuned alarm response to potential threats, offering a uniquely manageable empirical setting for exploring adaptive information diffusion within groups. To effectively address potential dangers, a social group must swiftly communicate the threat throughout the collective while conserving energy in the event that the threat is unfounded. Through a combination of modeling, simulation, and empirical observations of alarm spread and damping patterns, we identified the behavioral rules governing this adaptive response.
View Article and Find Full Text PDFModels of social interaction dynamics have been powerful tools for understanding the efficiency of information spread and the robustness of task allocation in social insect colonies. How workers spatially distribute within the colony, or spatial heterogeneity degree (SHD), plays a vital role in contact dynamics, influencing information spread and task allocation. We used agent-based models to explore factors affecting spatial heterogeneity and information flow, including the number of task groups, variation in spatial arrangements, and levels of task switching, to study: (1) the impact of multiple task groups on SHD, contact dynamics, and information spread, and (2) the impact of task switching on SHD and contact dynamics.
View Article and Find Full Text PDFLiving systems, from cells to superorganismic insect colonies, have an organizational boundary between inside and outside and allocate resources to defend it. Whereas the micro-scale dynamics of cell walls can be difficult to study, the adaptive allocation of workers to defense in social-insect colonies is more conspicuous. This is particularly the case for Tetragonisca angustula stingless bees, which combine different defensive mechanisms found across other colonial animals: (1) morphological specialization (distinct soldiers (majors) are produced over weeks); (2) age-based polyethism (young majors transition to guarding tasks over days); and (3) task switching (small workers (minors) replace soldiers within minutes under crisis).
View Article and Find Full Text PDFThe honeybee plays an extremely important role in ecosystem stability and diversity and in the production of bee pollinated crops. Honey bees and other pollinators are under threat from the combined effects of nutritional stress, parasitism, pesticides, and climate change that impact the timing, duration, and variability of seasonal events. To understand how parasitism and seasonality influence honey bee colonies separately and interactively, we developed a non-autonomous nonlinear honeybee-parasite interaction differential equation model that incorporates seasonality into the egg-laying rate of the queen.
View Article and Find Full Text PDFAs small-bodied terrestrial organisms, insects face severe desiccation risks in arid environments, and these risks are increasing under climate change. Here, we investigate the physiological, chemical, and behavioral mechanisms by which harvester ants, one of the most abundant arid-adapted insect groups, cope with desiccating environmental conditions. We aimed to understand how body size, cuticular hydrocarbon profiles, and queen number impact worker desiccation resistance in the facultatively polygynous harvester ant, Pogonomyrmex californicus.
View Article and Find Full Text PDFHoney bee pollination services are of tremendous agricultural and economic importance. Despite this, honey bees and other pollinators face ongoing perils, including population declines due to a variety of environmental stressors. Fungicides may be particularly insidious stressors for pollinators due to their environmental ubiquity and widespread approval for application during crop bloom.
View Article and Find Full Text PDFAbstractInvestigations of thermally adaptive behavioral phenotypes are critical for both understanding climate as a selective force and predicting global species distributions under climate change conditions. Cooperative nest founding is a common strategy in harsh environments for many species and can enhance growth and competitive advantage, but whether this social strategy has direct effects on thermal tolerance was previously unknown. We examined the effects of alternative social strategies on thermal tolerance in a facultatively polygynous (multiqueen) desert ant, , asking whether and how queen number affects worker thermal tolerances.
View Article and Find Full Text PDFAlarm signal propagation through ant colonies provides an empirically tractable context for analysing information flow through a natural system, with useful insights for network dynamics in other social animals. Here, we develop a methodological approach to track alarm spread within a group of harvester ants, . We initially alarmed three ants and tracked subsequent signal transmission through the colony.
View Article and Find Full Text PDFIndividual heterogeneity within societies provides opportunities to test hypotheses about adaptive neural investment in the context of group cooperation. Here, we explore neural investment in defense specialist soldiers of the eusocial stingless bee (Tetragonisca angustula) which are age subspecialized on distinct defense tasks and have an overall higher lifetime task repertoire than other sterile workers within the colony. Consistent with predicted behavioral demands, soldiers had higher relative visual (optic lobe) investment than nonsoldiers but only during the period when they were performing the most visually demanding defense task (hovering guarding).
View Article and Find Full Text PDFRecent observations of many sublethal effects of pesticides on pollinators have raised questions about whether standard short-term laboratory tests of pesticide effects on survival are sufficient for pollinator protection. The fungicide Pristine® and its active ingredients (25.2% boscalid, 12.
View Article and Find Full Text PDFAlthough fungicides were previously considered to be safe for important agricultural pollinators such as honey bees, recent evidence has shown that they can cause a number of behavioral and physiological sublethal effects. Here, we focus on the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.
View Article and Find Full Text PDFSocial groups form when the costs of breeding independently exceed fitness costs imposed by group living. The costs of independent breeding can often be energetic, especially for animals performing expensive behaviours, such as nest construction. To test the hypothesis that nesting costs can drive sociality by disincentivizing independent nest founding, we measured the energetics of nest construction and inheritance in a facultatively social carpenter bee ( Smith), which bores tunnel nests in wood.
View Article and Find Full Text PDFPollinators and other insects are experiencing an ongoing worldwide decline. While various environmental stressors have been implicated, including pesticide exposure, the causes of these declines are complex and highly debated. Fungicides may constitute a particularly prevalent threat to pollinator health due to their application on many crops during bloom, and because pollinators such as bees may consume fungicide-tainted pollen or nectar.
View Article and Find Full Text PDFThe fitness consequences of cooperation can vary across an organism's lifespan. For non-kin groups, especially, social advantages must balance intrinsic costs of cooperating with non-relatives. In this study, we asked how challenging life history stages can promote stable, long-term alliances among unrelated ant queens.
View Article and Find Full Text PDFCommercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.
View Article and Find Full Text PDFHoney bees (Apis mellifera) and other pollinator populations are declining worldwide, and the reasons remain controversial. Based on laboratory testing, fungicides have traditionally been considered bee-safe. However, there have been no experimental tests of the effects of fungicides on colony health under field conditions, and limited correlational data suggests there may be negative impacts on bees at levels experienced in the field.
View Article and Find Full Text PDFThe relationship between division of labor and individuals' spatial behavior in social insect colonies provides a useful context to study how social interactions influence the spreading of elements (which could be information, virus or food) across distributed agent systems. In social insect colonies, spatial heterogeneity associated with variations of individual task roles, affects social contacts, and thus the way in which agent moves through social contact networks. We used an Agent Based Model (ABM) to mimic three realistic scenarios of elements' transmission, such as information, food or pathogens, via physical contact in social insect colonies.
View Article and Find Full Text PDFThe fitness consequences of joining a group are highly dependent on ecological context, especially for non-kin. To assess the relationships between cooperation and environment, we examined variation in colony reproductive success for a harvester ant species that nests either solitarily or with multiple, unrelated queens, a social strategy known as primary polygyny. We measured the reproductive investment of colonies of solitary versus social nesting types at two sites, one with primarily single-queen colonies, and the other with a majority of polygynous nests.
View Article and Find Full Text PDFMetabolic rates of individual animals and social insect colonies generally scale hypometrically, with mass-specific metabolic rates decreasing with increasing size. Although this allometry has wide ranging effects on social behaviour, ecology and evolution, its causes remain controversial. Because it is difficult to experimentally manipulate body size of organisms, most studies of metabolic scaling depend on correlative data, limiting their ability to determine causation.
View Article and Find Full Text PDFThe evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature.
View Article and Find Full Text PDFA key requirement for social cooperation is the mitigation and/or social regulation of aggression towards other group members. Populations of the harvester ant Pogonomyrmex californicus show the alternate social phenotypes of queens founding nests alone (haplometrosis) or in groups of unrelated yet cooperative individuals (pleometrosis). Pleometrotic queens display an associated reduction in aggression.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2015
Increased risk of infectious disease is assumed to be a major cost of group living, yet empirical evidence for this effect is mixed. We studied whether larger social groups are more subdivided structurally. If so, the social subdivisions that form in larger groups may act as barriers to the spread of infection, weakening the association between group size and infectious disease.
View Article and Find Full Text PDFWe asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy.
View Article and Find Full Text PDF