GDF15 regulates energy balance and glucose homeostasis in rodents by activating its receptor GFRAL, expressed in the area postrema of the brain. However, whether GDF15-GFRAL signaling in the area postrema regulates glucose tolerance independent of changes in food intake and weight and contributes to the glucose-lowering effect of metformin remain unknown. Herein, we report that direct, acute GDF15 infusion into the area postrema of rats fed a high-fat diet increased intravenous glucose tolerance and insulin sensitivity to lower hepatic glucose production independent of changes in food intake, weight, and plasma insulin levels under conscious, unrestrained, and nonstressed conditions.
View Article and Find Full Text PDFMetformin, the most widely prescribed medication for obesity-associated type 2 diabetes (T2D), lowers plasma glucose levels, food intake, and body weight in rodents and humans, but the mechanistic site(s) of action remain elusive. Metformin increases plasma growth/differentiation factor 15 (GDF15) levels to regulate energy balance, while GDF15 administration activates GDNF family receptor α-like (GFRAL) that is highly expressed in the area postrema (AP) and the nucleus of the solitary tract (NTS) of the hindbrain to lower food intake and body weight. However, the tissue-specific contribution of plasma GDF15 levels after metformin treatment is still under debate.
View Article and Find Full Text PDFThe area postrema (AP) of the brain is exposed to circulating metabolites and hormones. However, whether AP detects glucose changes to exert biological responses remains unknown. Its neighboring nuclei, the nucleus tractus solitarius (NTS), responds to acute glucose infusion by inhibiting hepatic glucose production, but the mechanism also remains elusive.
View Article and Find Full Text PDF