Unlabelled: Fish gut microbial communities are important for the breakdown and energy harvesting of the host diet. Microbes within the fish gut are selected by environmental and evolutionary factors. To understand how fish gut microbial communities are shaped by diet, three tropical fish species (hawkfish, ; yellow tang, ; and triggerfish, ) were fed piscivorous (fish meal pellets), herbivorous (seaweed), and invertivorous (shrimp) diets, respectively.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Managing water quality with microbial impairment caused by poses unique challenges regarding the determination of fecal host origin. Most water monitoring is performed based on counts that neither detect the location of the introduction of pollution nor identify the type of contaminating . The use of sequenced-based microbial source tracking could allow for identification of fecal origin and potential remediation of pollution.
View Article and Find Full Text PDFFish gut microbial communities are important for the breakdown and energy harvesting of the host diet. Microbes within the fish gut are selected by environmental and evolutionary factors. To understand how fish gut microbial communities are shaped by diet, three tropical fish species (hawkfish, ; yellow tang, ; and triggerfish, ) were fed piscivorous (fish meal pellets), herbivorous (seaweed), and invertivorous (shrimp) diets, respectively.
View Article and Find Full Text PDFCoastal bays, such as Delaware Bay, are highly productive, ecologically important transitions between rivers and the coastal ocean. They offer opportunities to investigate archaeal assemblages across seasons, with the exchange of water masses that occurs with tidal cycles, and in the context of variable organic matter quality. For a year-long estuarine, size-fractionated time series, we used amplicon sequencing, chemical measurements, and qPCR to follow archaeal groups through the seasons.
View Article and Find Full Text PDFTidal salt marshes produce and emit CH . Therefore, it is critical to understand the biogeochemical controls that regulate CH spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH production, and higher salinity concentrations inhibit CH production in salt marshes.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2024
Microbial source tracking can determine fecal contamination but requires a relevant, sizable reference library for analysis. We provide a reference library of 100+ fecal microbiome samples relevant to mid-Atlantic United States ecosystems. Included are wild and domesticated fauna, wastewater, and septic samples applicable to Delaware source tracking studies.
View Article and Find Full Text PDFThe phylum " Patescibacteria" (or Candidate Phyla Radiation [CPR]) accounts for roughly one-quarter of microbial diversity on Earth, but the presence and diversity of these bacteria in marine sediments have been rarely charted. Here, we investigate the abundance, diversity, and metabolic capacities of CPR bacteria in three sediment sites (Mohns Ridge, North Pond, and Costa Rica Margin) with samples covering a wide range of redox zones formed during the early diagenesis of organic matter. Through metagenome sequencing, we found that all investigated sediment horizons contain " Patescibacteria" (0.
View Article and Find Full Text PDFAnaerobic ammonium oxidation (Anammox) bacteria are a group of extraordinary bacteria exerting a major impact on the global nitrogen cycle. Their phylogenetic breadth and diversity, however, are not well constrained. Here we describe a new, deep-branching family in the order of Candidatus Brocadiales, Candidatus Bathyanammoxibiaceae, members of which have genes encoding the key enzymes of the anammox metabolism.
View Article and Find Full Text PDFDeep sediments host many archaeal lineages, including the Asgard superphylum which contains lineages predicted to require syntrophic partnerships. Our knowledge about sedimentary archaeal diversity and their metabolic pathways and syntrophic partners is still very limited. We present here new genomes of Helarchaeota and the co-occurring sulfate-reducing bacteria (SRB) recovered from organic-rich sediments off Costa Rica Margin.
View Article and Find Full Text PDFAuthigenic carbonates represent a significant microbial sink for methane, yet little is known about the microbiome responsible for the methane removal. We identify carbonate microbiomes distributed over 21 locations hosted by seven different cold seeps in the Pacific and Atlantic Oceans by carrying out a gene-based survey using 16S rRNA- and mcrA gene sequencing coupled with metagenomic analyses. Based on 16S rRNA gene amplicon analyses, these sites were dominated by bacteria affiliated to the Firmicutes, Alpha- and Gammaproteobacteria.
View Article and Find Full Text PDFThe Asgard superphylum is a deeply branching monophyletic group of , recently described as some of the closest relatives of the eukaryotic ancestor. The wide application of genomic analyses from metagenome sequencing has established six distinct phyla, whose genomes encode diverse metabolic capacities and which play important biogeochemical and ecological roles in marine sediments. Here, we describe two metagenome-assembled genomes (MAGs) recovered from deep marine sediments off the Costa Rica margin, defining a novel lineage phylogenetically married to " Thorarchaeota"; as such, we propose the name "" for this phylum.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Oil reservoirs contain microbial populations that are both autochthonously and allochthonously introduced by industrial development. These microbial populations are greatly influenced by external factors including, but not limited to, salinity and temperature. In this study, we used metagenomics to examine the microbial populations within five wells of the same hydrocarbon reservoir system in the Gulf of Mexico.
View Article and Find Full Text PDFThe benthic environments of coral reefs are heavily shaped by physiochemical factors, but also the ecological interactions of the animals and plants in the reef ecosystem. Microbial populations may be shared within the ecosystem of sediments, seagrasses and reef fish. In this study, we hypothesize that coral reef and seagrass environments share members of the microbial community that are rare in some habitats and enriched in others, and that animals may integrate this connectivity.
View Article and Find Full Text PDFOil reservoirs have been shown to house numerous microbial lineages that differ based on the in-situ pH, salinity and temperature of the subsurface environment. Lineages of Firmicutes, including Clostridiales, have been frequently detected in oil reservoirs, but are typically not considered impactful or relevant due to their spore-forming nature. Here we show, using metagenomics, a high temperature oil reservoir of marine salinity contains a microbial population that is predominantly from within the Order Clostridiales.
View Article and Find Full Text PDFMicrobial cells in the seabed are thought to persist by slow population turnover rates and extremely low energy requirements. External stimulations such as seafloor hydrocarbon seeps have been demonstrated to significantly boost microbial growth; however, the microbial community response has not been fully understood. Here we report a comparative metagenomic study of microbial response to natural hydrocarbon seeps in the Gulf of Mexico.
View Article and Find Full Text PDFMeromictic lakes are stratified lakes that typically stimulate phototrophic anoxic microbial metabolism, including the transformation of sulphur. Less studied are the transformations of mercury in these environments, and the microorganisms, which mediate these reactions. In order to further an understanding of redox species, mercury and microbial populations in meromictic lakes, we examined the geochemistry and microbiology of Glacier Lake in Jamesville, NY.
View Article and Find Full Text PDFMarine sediments harbor a vast amount of Earth's microbial biomass, yet little is understood regarding how cells subsist in this low-energy, presumably slow-growth environment. Cells in marine sediments may require additional methods for genetic regulation, such as epigenetic modification DNA methylation. We investigated this potential phenomenon within a shallow estuary sediment core spanning 100 years of age.
View Article and Find Full Text PDFThe physical and chemical factors that can limit or prevent microbial growth in the deep subsurface are not well defined. Brines from an evaporite sequence were sampled in the Boulby Mine, United Kingdom between 800 and 1300 m depth. Ionic, hydrogen and oxygen isotopic composition were used to identify two brine sources, an aquifer situated in strata overlying the mine, and another ambiguous source distinct from the regional groundwater.
View Article and Find Full Text PDFDNA stable isotope probing (SIP) was used to track the uptake of organic and inorganic carbon sources for TACK archaea (Thaumarchaeota/Aigarchaeota/Crenarchaeota/Korarchaeota) on a cruise of opportunity in the North Atlantic. Due to water limitations, duplicate samples from the deep photic (60-115 m), the mesopelagic zones (local oxygen minimum; 215-835 m) and the bathypelagic zone (2085-2835 m) were amended with various combinations of 12C- or 13C-acetate/urea/bicarbonate to assess cellular carbon acquisition. The SIP results indicated the majority of TACK archaeal operational taxonomic units (OTUs) incorporated 13C from acetate and/or urea into newly synthesized DNA within 48 h.
View Article and Find Full Text PDFCandidate phyla (CP) are broad phylogenetic clusters of organisms that lack cultured representatives. Included in this fraction is the candidate Parcubacteria superphylum. Specific characteristics that have been ascribed to the Parcubacteria include reduced genome size, limited metabolic potential and exclusive reliance on fermentation for energy acquisition.
View Article and Find Full Text PDFHydrogenases are enzymes that play a key role in controlling excess reducing equivalents in both photosynthetic and anaerobic organisms. This enzyme is viewed as potentially important for the industrial generation of hydrogen gas; however, insufficient hydrogen production has impeded its use in a commercial process. Here, we explore the potential to circumvent this problem by directly evolving the Fe-Fe hydrogenase genes from two species of Clostridia bacteria.
View Article and Find Full Text PDF