Publications by authors named "Jennifer E Klomp"

How the oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients.

View Article and Find Full Text PDF

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer.

View Article and Find Full Text PDF

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 61. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer. Nevertheless, KRAS mutations account for only around 15% of KRAS-mutated cancers, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations.

View Article and Find Full Text PDF

Unlabelled: Primary/intrinsic and treatment-induced acquired resistance limit the initial response rate to and long-term efficacy of direct inhibitors of the KRASG12C mutant in cancer. To identify potential mechanisms of resistance, we applied a CRISPR/Cas9 loss-of-function screen and observed loss of multiple components of the Hippo tumor suppressor pathway, which acts to suppress YAP1/TAZ-regulated gene transcription. YAP1/TAZ activation impaired the antiproliferative and proapoptotic effects of KRASG12C inhibitor (G12Ci) treatment in KRASG12C-mutant cancer cell lines.

View Article and Find Full Text PDF

We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for -mutant pancreatic ductal adenocarcinoma (PDAC) cell growth . However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen.

View Article and Find Full Text PDF

Unlabelled: Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression.

View Article and Find Full Text PDF

We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine.

View Article and Find Full Text PDF

Oncogenic KRAS drives cancer growth by activating diverse signaling networks, not all of which have been fully delineated. We set out to establish a system-wide profile of the KRAS-regulated kinase signaling network (kinome) in KRAS-mutant pancreatic ductal adenocarcinoma (PDAC). We knocked down KRAS expression in a panel of six cell lines and then applied multiplexed inhibitor bead/MS to monitor changes in kinase activity and/or expression.

View Article and Find Full Text PDF

To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas.

View Article and Find Full Text PDF

The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus.

View Article and Find Full Text PDF

Endothelial cells (ECs) lining the vasculature of vertebrates respond to low oxygen (hypoxia) by maintaining vascular homeostasis and initiating adaptive growth of new vasculature through angiogenesis. Previous studies have uncovered the molecular underpinnings of the hypoxic response in ECs; however, there is a need for comprehensive temporal analysis of the transcriptome during hypoxia. Here, we sought to investigate the early transcriptional programs of hypoxic ECs by using RNA-Seq of primary cultured human umbilical vein ECs exposed to progressively increasing severity and duration of hypoxia.

View Article and Find Full Text PDF

Podosomes are compartmentalized actin-rich adhesions, defined by their ability to locally secrete proteases and remodel extracellular matrix. Matrix remodeling by endothelial podosomes facilitates invasion and thereby vessel formation. However, the mechanisms underlying endothelial podosome formation and function remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • KRAS mutations show different prevalence across cancers, being rare in lung and colorectal but common in pancreatic ductal adenocarcinoma (PDAC), indicating varying roles depending on the cancer type.
  • KRAS is found to be different from KRAS-mutant proteins in its ability to drive macropinocytosis, with MYC being crucial for this process in KRAS- PDAC but not in KRAS-mutant PDAC.
  • Despite KRAS having a defect in activating a key protein (p110α PI3K), its deficiency can be compensated by increased PI3Kγ activity, which may explain its frequent occurrence in pancreatic cancers while being rare in others.
View Article and Find Full Text PDF

In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) relies on KRAS and autophagy for tumor growth, but KRAS's role in autophagy was unclear.
  • Research found that blocking KRAS or its pathway (ERK MAPK) actually boosted autophagy while lowering metabolic functions in cancer cells.
  • Combining ERK inhibitors with autophagy blockers, like chloroquine, showed potential for better cancer treatment, suggesting a new approach for managing KRAS-driven PDAC.
View Article and Find Full Text PDF

Kinases are involved in a broad spectrum of cell behaviors. A single kinase can interact with different ligands each eliciting a specific cellular response. Dissecting downstream signaling pathways of kinases is a key step to understanding physiological and pathological cell process.

View Article and Find Full Text PDF

Physiological stimuli activate protein kinases for finite periods of time, which is critical for specific biological outcomes. Mimicking this transient biological activity of kinases is challenging due to the limitations of existing methods. Here, we report a strategy enabling transient kinase activation in living cells.

View Article and Find Full Text PDF

Virion protein 16 (VP16) of herpes simplex virus type 1 (HSV-1) is a potent transcriptional activator of viral immediate-early (IE) genes. The VP16 activation domain can recruit various transcriptional coactivators to target gene promoters. However, the role of transcriptional coactivators in HSV-1 IE gene expression during lytic infection had not been fully defined.

View Article and Find Full Text PDF