Publications by authors named "Jennifer E Fraylick"

Exoenzyme S (ExoS) is an ADP-ribosyltransferase (ADPRT) directly translocated into eukaryotic cells by the type III secretory (TTS) process of Pseudomonas aeruginosa. Comparisons of the functional effects of ExoS on human epithelial and murine fibroblastic cells showed that human epithelial cells exhibited an overall increased sensitivity to the effects of bacterially translocated ExoS on cell proliferation, morphology and re-adherence. ExoS was also found to ADP-ribosylate a greater number of low-molecular-mass G (LMMG) proteins in human epithelial cells, as compared to murine fibroblasts.

View Article and Find Full Text PDF

Exoenzyme S (ExoS) is a bifunctional virulence factor directly translocated into eukaryotic cells by the type III secretory process of Pseudomonas aeruginosa. Bacterial translocation of ExoS into epithelial cells is associated with diverse effects on cell function, including inhibition of growth, alterations in cell morphology, and effects on adherence processes. Preferred substrates of the ADP-ribosyltransferase (ADPRT) portion of ExoS include low molecular weight G-proteins (LMWG-proteins) in the Ras family.

View Article and Find Full Text PDF

Exoenzyme S (ExoS) ADP-ribosylates multiple low-molecular-mass G- (LMMG-) proteins in vitro. Identification of the in vivo substrate specificity of ExoS has been hindered by its bacterial contact delivery into eukaryotic cells and difficulties in identifying ADP-ribosylated proteins within cells. Two-dimensional electrophoresis comparisons of substrate modifications by ExoS in vitro to that following bacterial translocation into HT-29 epithelial cells identified Ras, Ral, and Rab proteins and Rac1 as in vivo substrates of ExoS ADPRT activity.

View Article and Find Full Text PDF