Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and regenerative capacity, which can lead to sarcopenia and increased mortality. Although the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia.
View Article and Find Full Text PDFMuscles Ligaments Tendons J
January 2012
Skeletal muscle is a highly dynamic tissue that can change in size in response to physiological demands and undergo successful regeneration even upon extensive injury. A population of resident stem cells, termed satellite cells, accounts for skeletal muscle plasticity, maintenance and regeneration. Mammalian satellite cells, generated from muscle precursor cells during development, are maintained quiescent in the musculature throughout a lifespan, but ready to activate, proliferate and differentiate into myocytes upon demand.
View Article and Find Full Text PDF