Background: Airway smooth muscle (ASM) cells are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyperresponsiveness and airway remodelling. The extracellular matrix (ECM) can influence tissue remodelling pathways; however, to date no study has investigated the effect of ASM ECM stiffness and cross-linking on the development of asthmatic airway remodelling. We hypothesised that transforming growth factor-β (TGF-β) activation by ASM cells is influenced by ECM in asthma and sought to investigate the mechanisms involved.
View Article and Find Full Text PDFInt J Biochem Cell Biol
March 2020
ETS domain-containing protein-1 (ELK1) is a transcription factor important in regulating αvβ6 integrin expression. αvβ6 integrins activate the profibrotic cytokine Transforming Growth Factor β1 (TGFβ1) and are increased in the alveolar epithelium in idiopathic pulmonary fibrosis (IPF). IPF is a disease associated with aging and therefore we hypothesised that aged animals lacking Elk1 globally would develop spontaneous fibrosis in organs where αvβ6 mediated TGFβ activation has been implicated.
View Article and Find Full Text PDFThe tetrameric folding of β-tryptase and the pair-wise distribution of its substrate binding sites offer a unique opportunity for development of inhibitors that span two adjacent binding sites. A series of dimeric inhibitors with two basic P1 moieties was discovered using this design strategy and exhibited tight-binder characteristics. Using the same strategy, an attempt was made to design and synthesize dimeric inhibitors with two neutral-P1 groups in hope to exploit the dimeric binding mode to achieve a starting point for further optimization.
View Article and Find Full Text PDFA solid phase combinatorial library was designed based on X-ray structures and in-silico models to explore an inducible S4+ pocket, which is formed by a simple side-chain rotation of Tyr95. This inducible S4+ pocket is unique to β-tryptase and does not exist for other trypsin-like serine proteases of interest. Therefore, inhibitors utilizing this pocket have inherent advantages for being selective against other proteases in the same family.
View Article and Find Full Text PDFA novel β-tryptase inhibitor with a basic benzylamine P1 group, a piperidine-amide linker, and a substituted indole P4 group was discovered. A substitution at 4-indole position was introduced to constrain the conformational flexibility of the inhibitor to the bioactive conformation exhibited by X-ray structures so that entropic penalty was decreased. More importantly, this constrained conformation limited the accessibility of this molecule to anti-targets, especially SSAO, so that an enhanced metabolic profile was achieved.
View Article and Find Full Text PDFTryptases are serine proteases that are thought to be uniquely and proteolytically active as tetramers. Crystallographic studies reveal that the active tetramer is a flat ring structure composed of four monomers, with their active sites arranged around a narrow central pore. This model explains why many of the preferred substrates of tryptase are short peptides; however, it does not explain how tryptase cleaves large protein substrates such as fibronectin, although a number of studies have reported in vitro mechanisms for generating active monomers that could digest larger substrates.
View Article and Find Full Text PDFA new series of novel mast cell tryptase inhibitors is reported, which features the use of an indole structure as the hydrophobic substituent on a m-benzylaminepiperidine template. The best members of this series display good in vitro activity and excellent selectivity against other serine proteases.
View Article and Find Full Text PDFTryptase is a serine protease found almost exclusively in mast cells. It has trypsin-like specificity, favoring cleavage of substrates with an arginine (or lysine) at the P1 position, and has optimal catalytic activity at neutral pH. Current evidence suggests tryptase beta is the most important form released during mast cell activation in allergic diseases.
View Article and Find Full Text PDFWe exploit the concept of using hydrogen bonds to link multiple ligands for maintaining simultaneous interactions with polyvalent binding sites. This approach is demonstrated by the syntheses and evaluation of pseudo-bivalent ligands as potent inhibitors of human beta-tryptase.
View Article and Find Full Text PDFIn this manuscript, the synthesis and SAR evaluation of a novel pyrazinone class of tryptase inhibitors is described. Chemical optimization of the P1 and P4 groups led to the identification of 7p (K(i)=93 nM) as a potent inhibitor of mast cell tryptase.
View Article and Find Full Text PDF