Objectives: This study sought to assess the vascular response of overlapping Absorb stents compared with overlapping newer-generation everolimus-eluting metallic platform stents (Xience V [XV]) in a porcine coronary artery model.
Background: The everolimus-eluting bioresorbable vascular scaffold (Absorb) is a novel approach to treating coronary lesions. A persistent inflammatory response, fibrin deposition, and delayed endothelialization have been reported with overlapping first-generation drug-eluting stents.
Int J Cardiovasc Imaging
March 2012
To quantify with in vivo OCT and histology, the device/vessel interaction after implantation of the bioresorbable vascular scaffold (BVS). We evaluated the area and thickness of the strut voids previously occupied by the polymeric struts, and the neointimal hyperplasia (NIH) area covering the endoluminal surface of the strut voids (NIH(EV)), as well as the NIH area occupying the space between the strut voids (NIH(BV)), in healthy porcine coronary arteries at 2, 3 and 4 years after implantation of the device. Twenty-two polymeric BVS were implanted in the coronary arteries of 11 healthy Yucatan minipigs that underwent OCT at 2, 3 and 4 years after implantation, immediately followed by euthanasia.
View Article and Find Full Text PDFCirculation
November 2010
Background: With the use of optical coherence tomography (OCT), alterations of the reflectance characteristics of everolimus-eluting bioresorbable vascular scaffold (BVS) struts have been reported in humans. In the absence of histology, the interpretation of the appearances of the struts by OCT remains speculative. We therefore report OCT findings with corresponding histology in the porcine coronary artery model immediately after and at 28 days and 2, 3, and 4 years after BVS implantation.
View Article and Find Full Text PDF