Chronic stress and low-grade chronic inflammation (LGCI) are key underlying factors formany diseases, including bone and body composition impairments. Objectives of this narrativereview were to examine the mechanisms by which chronic stress and LGCI may influenceosteosarcopenic adiposity (OSA) syndrome, originally named as ostoesarcopenic obesity (OSO).We also examined the crucial nutrients presumed to be affected by or cause of stress andinflammation and compared/contrasted them to those of our prehistoric ancestors.
View Article and Find Full Text PDFOsteosarcopenic obesity (OSO) syndrome describes the simultaneous deterioration of bone, muscle and excess fat, resulting in reduced functionality and systemic metabolic dysregulation. The key component contributing to this may be ectopic fat in the viscera, bone and muscle. OSO research to date is summarized, and the revised criteria for its identification for research purposes are reviewed and proposed, including new criteria to assess visceral fat in males and females.
View Article and Find Full Text PDFWe recently showed that using micronutrient ratios in nutritional research might provide more insights into how diet affects metabolism and health outcomes, based on the notion that nutrients, unlike drugs, are not consumed one at a time and do not target a single metabolic pathway. In this paper, we present a concept of macronutrient ratios, including intra- and inter-macronutrient ratios. Macronutrient intakes from food only, from the What We Eat in America website (summarized National Health and Nutrition Examination Survey data) were transposed into Microsoft Excel to generate ratios.
View Article and Find Full Text PDFThe 2015 US dietary guidelines advise the importance of good dietary patterns for health, which includes all nutrients. Micronutrients are rarely, if ever, consumed separately, they are not tissue specific in their actions and at the molecular level they are multitaskers. Metabolism functions within a seemingly random cellular milieu however ratios are important, for example, the ratio of adenosine triphosphate to adenosine monophosphate, or oxidized to reduced glutathione.
View Article and Find Full Text PDFBackground: Aging, chronic inflammation and/or many chronic conditions may result in loss of bone, loss of muscle and increased adiposity, manifested either overtly (overweight) or furtively as fat infiltration into bone and muscle. This combined condition has been identified as osteosarcopenic obesity. Micronutrients are required, not just to prevent deficiency diseases, but for optimal health and metabolic homeostasis.
View Article and Find Full Text PDFBackground: Osteosarcopenic obesity, the combined deterioration of bone, muscle and fat tissues, could become the ultimate trajectory of aging. Aging stem cells are deregulated by low-grade chronic inflammation and possibly by diet. The metabolic shift of stem cells towards adipogenesis results in osteo obesity, sarco obesity and obesity.
View Article and Find Full Text PDFBackground: Body composition changes occur with aging; bone and muscle mass decrease while fat mass increases. The collective term for these changes is osteosarcopenic obesity. It is known that conventional resistance exercise programs build/maintain lean mass and reduce fat mass.
View Article and Find Full Text PDFThe overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA.
View Article and Find Full Text PDF