In this study, three acid mine drainage (AMD) sources were investigated as potential sources of iron for the synthesis of iron nanoparticles using green tea extract (an environmentally friendly reductant) or sodium borohydride (a chemical reductant). Electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation-reduction potential (ORP), ion chromatography (IC), and inductively coupled plasma-mass spectroscopy (ICP-MS) techniques were used to characterize the AMD, and the most suitable AMD sample was selected based on availability. Additionally, three tea extracts were characterized using ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picryl-hydrazine-hydrate (DPPH), and the most suitable environmentally friendly reductant was selected based on the highest FRAP (1152 µmol FeII/g) and DPPH (71%) values.
View Article and Find Full Text PDFMine dust has been linked to the development of pneumoconiotic diseases such as silicosis and coal workers' pneumoconiosis. Currently, it is understood that the physicochemical and mineralogical characteristics drive the toxic nature of dust particles; however, it remains unclear which parameter(s) account for the differential toxicity of coal dust. This study aims to address this issue by demonstrating the use of the partial least squares regression (PLSR) machine learning approach to compare the influence of D sub 10 μm coal particle characteristics against markers of cellular damage.
View Article and Find Full Text PDFUnderstanding the fundamental controls that govern the generation of mine drainage is essential for waste management strategies. Combining the isotopic composition of water (H and O) and dissolved sulfate (S and O) with hydrogeochemical measurements of surface and groundwater, microbial analysis, composition of sediments and precipitates, and geochemical modeling results in this study we discussed the processes that control mine water chemistry and identified the potential source(s) and possible mechanisms governing sulfate formation and transformation around a South African colliery. Compared to various South African water standards, water samples collected from the surroundings of a coal waste disposal facility had elevated Fe (0.
View Article and Find Full Text PDF