A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force.
View Article and Find Full Text PDFNew and more biologically relevant in vitro models are needed for use in drug development, regenerative medicine, and fundamental scientific investigation. While the importance of the extracellular microenvironment is clear, the ability to investigate the effects of physiologically relevant biophysical and biochemical factors is restricted in traditional cell culture platforms. Moreover, the versatility for multi-parameter manipulation, on a single platform, with the optical resolution to monitor the dynamics of individual cells or small population is lacking.
View Article and Find Full Text PDFTherapeutic effects from injection of stem cells are often hampered by acute donor cell death as well as migration away from damaged areas. This is likely due to the fact that injected cells do not have the physical and biochemical cues for ordered engrafment. Here we evaluate 3 common biomatrices (Matrigel, Collagen I, Purmatrix) that has the potential of providing suitable scaffolds needed to enhance stem cell survival.
View Article and Find Full Text PDF