Publications by authors named "Jennifer Beane"

Article Synopsis
  • Lung cancer remains the leading cause of cancer deaths globally, highlighting the need for better understanding of its early development stages to enable timely interventions.
  • An international team of scientists identified knowledge gaps in how premalignant lung lesions progress to lung cancer and developed research questions to fill these gaps and guide future investigations.
  • Addressing these gaps is crucial for improving screening and early detection methods, which could lead to innovative strategies that effectively reduce lung cancer incidence and enhance patient outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on developing a radiomic biomarker (SILA) that predicts the aggression of lung adenocarcinoma (LUAD) by analyzing preoperative CT scans, which can help improve patient management before surgery.
  • - SILA scores were validated in a sample of 161 patients with stage I LUAD, revealing significant correlations with recurrence-free survival and histologic characteristics like tumor invasion size and growth pattern.
  • - Results indicated that the SILA effectively predicted different grades of lung cancer, demonstrating its potential as a valuable tool for assessing tumor behavior and guiding treatment decisions prior to surgical resection.
View Article and Find Full Text PDF

Microscopic vascular invasion (VI) is predictive of recurrence and benefit from lobectomy in stage I lung adenocarcinoma (LUAD) but is difficult to assess in resection specimens and cannot be accurately predicted prior to surgery. Thus, new biomarkers are needed to identify this aggressive subset of stage I LUAD tumors. To assess molecular and microenvironment features associated with angioinvasive LUAD we profiled 162 resected stage I tumors with and without VI by RNA-seq and explored spatial patterns of gene expression in a subset of 15 samples by high-resolution spatial transcriptomics (stRNA-seq).

View Article and Find Full Text PDF

Bronchial premalignant lesions (PMLs) precede the development of invasive lung squamous cell carcinoma (LUSC), posing a significant challenge in distinguishing those likely to advance to LUSC from those that might regress without intervention. This study followed a novel computational approach, the Graph Perceiver Network, leveraging hematoxylin and eosin-stained whole slide images to stratify endobronchial biopsies of PMLs across a spectrum from normal to tumor lung tissues. The Graph Perceiver Network outperformed existing frameworks in classification accuracy predicting LUSC, lung adenocarcinoma, and nontumor lung tissue on The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium datasets containing lung resection tissues while efficiently generating pathologist-aligned, class-specific heatmaps.

View Article and Find Full Text PDF

Multimodal machine learning models are being developed to analyze pathology images and other modalities, such as gene expression, to gain clinical and biological insights. However, most frameworks for multimodal data fusion do not fully account for the interactions between different modalities. Here, we present an attention-based fusion architecture that integrates a graph representation of pathology images with gene expression data and concomitantly learns from the fused information to predict patient-specific survival.

View Article and Find Full Text PDF

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) are clinically and molecularly heterogeneous diseases. We utilized clustering and integrative network analyses to elucidate roles for microRNAs (miRNAs) and miRNA isoforms (isomiRs) in COPD and ILD pathogenesis. Short RNA sequencing was performed on 351 lung tissue samples of COPD (n = 145), ILD (n = 144) and controls (n = 64).

View Article and Find Full Text PDF

Unlabelled: A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells.

View Article and Find Full Text PDF

Background: Bronchial premalignant lesions (PMLs) are composed primarily of cells resembling basal epithelial cells of the airways, which through poorly understood mechanisms have the potential to progress to lung squamous cell carcinoma (LUSC). Despite ongoing efforts that have mapped gene expression and cell diversity across bronchial PML pathologies, signaling and transcriptional events driving malignancy are poorly understood. Evidence has suggested key roles for the Hippo pathway effectors YAP and TAZ and associated TEAD and TP63 transcription factor families in bronchial basal cell biology and LUSC.

View Article and Find Full Text PDF

Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression.

View Article and Find Full Text PDF

Basal-like breast cancers, an aggressive breast cancer subtype that has poor treatment options, are thought to arise from luminal mammary epithelial cells that undergo basal plasticity through poorly understood mechanisms. Using genetic mouse models and ex vivo primary organoid cultures, we show that conditional co-deletion of the LATS1 and LATS2 kinases, key effectors of Hippo pathway signaling, in mature mammary luminal epithelial cells promotes the development of Krt14 and Sox9-expressing basal-like carcinomas that metastasize over time. Genetic co-deletion experiments revealed that phenotypes resulting from the loss of LATS1/2 activity are dependent on the transcriptional regulators YAP/TAZ.

View Article and Find Full Text PDF

SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in the airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments have not been fully characterized using matched samples from large cohorts. Gene expression data from 793 nasal and 1673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking status (current versus former) was the only clinical factor significantly and reproducibly associated with VE gene expression.

View Article and Find Full Text PDF

The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer.

View Article and Find Full Text PDF

Deep learning is a powerful tool for whole slide image (WSI) analysis. Typically, when performing supervised deep learning, a WSI is divided into small patches, trained and the outcomes are aggregated to estimate disease grade. However, patch-based methods introduce label noise during training by assuming that each patch is independent with the same label as the WSI and neglect overall WSI-level information that is significant in disease grading.

View Article and Find Full Text PDF

Introduction: Although three randomized control trials have proven mortality benefit of CT lung cancer screening (CTLS), <5% of eligible US smokers are screened. Some attribute this to fear of harm conveyed at shared decision visits, including the harm of overdiagnosis/overtreatment of indolent BAC-like adenocarcinoma.

Methods: Since the frequency of indolent cancers has not been compared between CTLS and routinely detected cohorts, we compare pathology and RNA expression of 86 NCCN high-risk CTLS subjects to 83 high-risk (HR-R) and 51 low-risk (LR-R) routinely detected patients.

View Article and Find Full Text PDF

: SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments has not been fully characterized using matched samples from large cohorts. : Gene expression data from 793 nasal and 1,673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking was the only clinical factor significantly and reproducibly associated with VE gene expression.

View Article and Find Full Text PDF

Objective: The immune response to invasive carcinoma has been the focus of published work, but little is known about the adaptive immune response to bronchial premalignant lesions (PMLs), precursors of lung squamous cell carcinoma. This study was designed to characterize the T cell receptor (TCR) repertoire in PMLs and its association with clinical, pathological, and molecular features.

Methods: Endobronchial biopsies (n=295) and brushings (n=137) from high-risk subjects (n=50), undergoing lung cancer screening at approximately 1-year intervals via autofluorescence bronchoscopy and CT, were profiled by RNA-seq.

View Article and Find Full Text PDF

Proper lung function relies on the precise balance of specialized epithelial cells that coordinate to maintain homeostasis. Herein, we describe essential roles for the transcriptional regulators YAP/TAZ in maintaining lung epithelial homeostasis, reporting that conditional deletion of Yap and Wwtr1/Taz in the lung epithelium of adult mice results in severe defects, including alveolar disorganization and the development of airway mucin hypersecretion. Through in vivo lineage tracing and in vitro molecular experiments, we reveal that reduced YAP/TAZ activity promotes intrinsic goblet transdifferentiation of secretory airway epithelial cells.

View Article and Find Full Text PDF

Molecular events that drive the development of precancerous lesions in the bronchial epithelium, which are precursors of lung squamous cell carcinoma (LUSC), are poorly understood. We demonstrate that disruption of epithelial cellular polarity, via the conditional deletion of the apical determinant Crumbs3 (Crb3), initiates and sustains precancerous airway pathology. The loss of Crb3 in adult luminal airway epithelium promotes the uncontrolled activation of the transcriptional regulators YAP and TAZ, which stimulate intrinsic signals that promote epithelial cell plasticity and paracrine signals that induce basal-like cell growth.

View Article and Find Full Text PDF

The human bronchial epithelium is composed of multiple distinct cell types that cooperate to defend against environmental insults. While studies have shown that smoking alters bronchial epithelial function and morphology, its precise effects on specific cell types and overall tissue composition are unclear. We used single-cell RNA sequencing to profile bronchial epithelial cells from six never and six current smokers.

View Article and Find Full Text PDF

A chemopreventive effect of aspirin (ASA) on lung cancer risk is supported by epidemiologic and preclinical studies. We conducted a randomized, double-blinded study in current heavy smokers to compare modulating effects of intermittent versus continuous low-dose ASA on nasal epithelium gene expression and arachidonic acid (ARA) metabolism. Fifty-four participants were randomized to intermittent (ASA 81 mg daily for one week/placebo for one week) or continuous (ASA 81 mg daily) for 12 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • Early detection and treatment of cancer can make a big difference in helping patients feel better.
  • Researchers looked at how the immune system reacts to changes in lung cells before they become cancerous.
  • They found that understanding these changes can help create new ways to spot lung cancer early and develop treatments that use the immune system to fight it.
View Article and Find Full Text PDF

The physiologic response to tobacco smoke can be measured by gene-expression profiling of the airway epithelium. Temporal resolution of kinetics of gene-expression alterations upon smoking-cessation might delineate distinct biological processes that are activated during recovery from tobacco smoke exposure. Using whole genome gene-expression profiling of individuals initiating a smoking-cessation attempt, we sought to characterize the kinetics of gene-expression alterations in response to short-term smoking-cessation in the nasal epithelium.

View Article and Find Full Text PDF

Bronchial premalignant lesions (PMLs) are precursors of lung squamous cell carcinoma, but have variable outcome, and we lack tools to identify and treat PMLs at risk for progression to cancer. Here we report the identification of four molecular subtypes of PMLs with distinct differences in epithelial and immune processes based on RNA-Seq profiling of endobronchial biopsies from high-risk smokers. The Proliferative subtype is enriched with bronchial dysplasia and exhibits up-regulation of metabolic and cell cycle pathways.

View Article and Find Full Text PDF

The molecular alterations that occur in cells before cancer is manifest are largely uncharted. Lung carcinoma in situ (CIS) lesions are the pre-invasive precursor to squamous cell carcinoma. Although microscopically identical, their future is in equipoise, with half progressing to invasive cancer and half regressing or remaining static.

View Article and Find Full Text PDF