Radiation exposure due to radiological terrorism and military circumstances are a continuing threat for the civilian population. In an uncontrolled radiation event, it is likely that there will be other types of injury involved, including trauma. While radiation combined injury is recognized as an area of great significance, overall there is a paucity of information regarding the mechanisms underlying the interactions between irradiation and other forms of injury, or what countermeasures might be effective in ameliorating such changes.
View Article and Find Full Text PDFPurpose: Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury.
View Article and Find Full Text PDFChemokines and their receptors play a crucial role in normal brain function as well as in pathological conditions such as injury and disease-associated neuroinflammation. Chemokine receptor-2 (CCR2), which mediates the recruitment of infiltrating and resident microglia to sites of central nervous system (CNS) inflammation, is upregulated by ionizing irradiation and traumatic brain injury. Our objective was to determine if a deficiency in CCR2 and subsequent effects on brain microglia affect neurogenesis and cognitive function after radiation combined injury (RCI).
View Article and Find Full Text PDFIonizing irradiation significantly affects hippocampal neurogenesis and is associated with cognitive impairments; these effects may be influenced by an altered microenvironment. Oxidative stress is a factor that has been shown to affect neurogenesis, and one of the protective pathways that deal with such stress involves the antioxidant enzyme superoxide dismutase (SOD). This study addressed what impact a deficiency in cytoplasmic (SOD1) or mitochondrial (SOD2) SOD has on radiation effects on hippocampal neurogenesis.
View Article and Find Full Text PDFDNA strand breaks trigger marked phosphorylation of histone H2AX (i.e. gamma-H2AX).
View Article and Find Full Text PDFExposure to heavy-ion radiation is considered a potential health risk in long-term space travel. In the central nervous system (CNS), loss of critical cellular components may lead to performance decrements that could ultimately compromise mission goals and long-term quality of life. Hippocampal-dependent cognitive impairments occur after exposure to ionizing radiation, and while the pathogenesis of this effect is not yet clear, it may involve the production of newly born neurons (neurogenesis) in the hippocampal dentate gyrus.
View Article and Find Full Text PDFIonizing irradiation results in significant alterations in hippocampal neurogenesis that are associated with cognitive impairments. Such effects are influenced, in part, by alterations in the microenvironment within which the neurogenic cells exist. One important factor that may affect neurogenesis is oxidative stress, and this study was done to determine if and how the extracellular isoform of superoxide dismutase (SOD3, EC-SOD) mediated radiation-induced alterations in neurogenic cells.
View Article and Find Full Text PDFPurpose: To determine whether changes in oxidative stress could enhance the sensitivity of neural precursor cells to ionizing radiation.
Materials And Methods: Two strategies were used whereby oxidative stress was modulated endogenously, through manipulation cell culture density, or exogenously, through direct addition of hydrogen peroxide.
Results: Cells subjected to increased endogenous oxidative stress through low-density growth routinely exhibited an inhibition of growth following irradiation.