In this study, an innovative approach based on fiberoptically coupled substrate-integrated hollow waveguide (iHWG) gas cells for the analysis of low sample volumes suitable for remote broad- and narrow-band mid-infrared (MIR; 2.5-20 μm) sensing applications is reported. The feasibility of remotely addressing iHWG gas cells, configured in a double-pass geometry via a reflector, by direct coupling to a 7-around-1 mid-infrared fiber bundle is demonstrated, facilitating low-level hydrocarbon gas analysis.
View Article and Find Full Text PDFA new generation of hollow waveguide (HWG) gas cells of unprecedented compact dimensions facilitating low sample volumes suitable for broad- and narrow-band mid-infrared (MIR; 2.5-20 μm) sensing applications is reported: the substrate-integrated hollow waveguide (iHWG). iHWGs are layered structures providing light guiding channels integrated into a solid-state substrate material, which are competitive if not superior in performance to conventional leaky-mode fiber optic silica HWGs having similar optical pathlengths.
View Article and Find Full Text PDFWe describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample.
View Article and Find Full Text PDF