Publications by authors named "Jennifer A Runquist"

HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.

View Article and Find Full Text PDF

In the Rhodobacter sphaeroides phosphoribulokinase (PRK) structure, there are several disordered regions, including a loop containing invariant residues Y98 and H100. The functional importance of these residues has been unclear. PRK is inactivated by diethyl pyrocarbonate (DEPC) and protected by the substrates ATP and Ru5P, as well as by the competitive inhibitor, 6-phosphogluconate, suggesting active site histidine residue(s).

View Article and Find Full Text PDF

3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase is a key enzyme in the ketogenic pathway that supplies metabolic fuel to extrahepatic tissues. Enzyme deficiency may be due to a variety of human mutations and can be fatal. Diminished activity has been explained based on analyses of recombinant human mutant proteins or, more recently, in the context of structural models for the enzyme.

View Article and Find Full Text PDF

Mutagenic substitution of the invariant D42 and D169 residues in phosphoribulokinase (PRK) with amino acids that contain neutral side chains (e.g., alanine or asparagine) results in large decreases in catalytic efficiency (10(5)- and 10(4)-fold for replacement of D42 and D169, respectively).

View Article and Find Full Text PDF