Publications by authors named "Jennifer A Moore"

Urbanization is commonly associated with biodiversity loss and habitat fragmentation. However, urban environments often have greenspaces that can support wildlife populations, including rare species. The challenge for conservation planners working in these systems is identifying priority habitats and corridors for protection before they are lost.

View Article and Find Full Text PDF

Successful reproduction is critical to the persistence of at-risk species; however, reproductive characteristics are understudied in many wild species. New Zealand's endemic tuatara (Sphenodon punctatus), the sole surviving member of the reptile order Rhynchocephalia, is restricted to 10% of its historic range. To complement ongoing conservation efforts, we collected and characterized mature sperm from male tuatara for the first time.

View Article and Find Full Text PDF

Genetic structuring of wild populations is dependent on environmental, ecological, and life-history factors. The specific role environmental context plays in genetic structuring is important to conservation practitioners working with rare species across areas with varying degrees of fragmentation. We investigated fine-scale genetic patterns of the federally threatened Eastern Massasauga Rattlesnake () on a relatively undisturbed island in northern Michigan, USA.

View Article and Find Full Text PDF

Population bottlenecks can reduce genetic diversity and may lead to inbreeding depression. However, some studies have provided evidence that long lifespans buffer negative genetic effects of bottlenecks. Others have cautioned that longevity might merely mask the effects of genetic drift, which will still affect long-term population viability.

View Article and Find Full Text PDF

Landscape genetic analyses allow detection of fine-scale spatial genetic structure (SGS) and quantification of effects of landscape features on gene flow and connectivity. Typically, analyses require generation of resistance surfaces. These surfaces characteristically take the form of a grid with cells that are coded to represent the degree to which landscape or environmental features promote or inhibit animal movement.

View Article and Find Full Text PDF
Article Synopsis
  • Tests with binary outcomes, like whether a disease agent is present or absent, are common but often lead to false positives and negatives, making perfect accuracy rare.
  • Understanding the uncertainty involved in these tests (like error rates) is essential to accurately interpret results, either for an individual subject or the broader population.
  • Proper interpretation of imperfect test results not only alters how we understand the data but also influences how we design and execute these tests moving forward.
View Article and Find Full Text PDF

Roads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget.

View Article and Find Full Text PDF

Landscape genetic studies typically focus on the evolutionary processes that give rise to spatial patterns that are quantified at a single point in time. Although landscape change is widely recognized as a strong driver of microevolutionary processes, few landscape genetic studies have directly evaluated the change in spatial genetic structure (SGS) over time with concurrent changes in landscape pattern. We introduce a novel approach to analyze landscape genetic data through time.

View Article and Find Full Text PDF

The idealized concept of a population is integral to ecology, evolutionary biology, and natural resource management. To make analyses tractable, most models adopt simplifying assumptions, which almost inevitably are violated by real species in nature. Here, we focus on both demographic and genetic estimates of effective population size per generation (Ne), the effective number of breeders per year (Nb), and Wright's neighborhood size (NS) for black bears (Ursus americanus) that are continuously distributed in the northern lower peninsula of Michigan, United States.

View Article and Find Full Text PDF

The intestinal microbiota has important functions that contribute to host health. The compositional dynamics of microbial communities are affected by many factors, including diet and presence of pathogens. In contrast to humans and domestic mammals, the composition and seasonal dynamics of intestinal microbiota of wildlife species remain comparatively understudied.

View Article and Find Full Text PDF

Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions.

View Article and Find Full Text PDF

Source-sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source-sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time.

View Article and Find Full Text PDF

Nonrandom mating can structure populations and has important implications for population-level processes. Investigating how and why mating deviates from random is important for understanding evolutionary processes as well as informing conservation and management. Prior to the implementation of parentage analyses, understanding mating patterns in solitary, elusive species like bears was virtually impossible.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E.

View Article and Find Full Text PDF

Understanding the factors that affect dispersal is a fundamental question in ecology and conservation biology, particularly as populations are faced with increasing anthropogenic impacts. Here we collected georeferenced genetic samples (n = 2,540) from three generations of black bears (Ursus americanus) harvested in a large (47,739 km2), geographically isolated population and used parentage analysis to identify mother-offspring dyads (n = 337). We quantified the effects of sex, age, habitat type and suitability, and local harvest density at the natal and settlement sites on the probability of natal dispersal, and on dispersal distances.

View Article and Find Full Text PDF

Climate change poses a particular threat to species with fragmented distributions and little or no capacity to migrate. Assisted colonization, moving species into regions where they have not previously occurred, aims to establish populations where they are expected to survive as climatic envelopes shift. However, adaptation to the source environment may affect whether species successfully establish in new regions.

View Article and Find Full Text PDF

Understanding the impact of natural and anthropogenic landscape features on population connectivity is a major goal in evolutionary ecology and conservation. Discovery of dispersal barriers is important for predicting population responses to landscape and environmental changes, particularly for populations at geographic range margins. We used a landscape genetics approach to quantify the effects of landscape features on gene flow and connectivity of boreal toad (Bufo boreas) populations from two distinct landscapes in south-east Alaska (Admiralty Island, ANM, and the Chilkat River Valley, CRV).

View Article and Find Full Text PDF

We have investigated how the effectiveness of a corrosion inhibitor added to an aqueous solution to suppress the corrosion rate of steel is reduced by the addition of sand. The equilibrium adsorption isotherms of the inhibitor with respect to both the steel surface (consisting of iron carbonate under the corrosion conditions used here) and the sand surface have been measured. The results enable the quantitative calculation of how the surface concentration of inhibitor at the steel surface is reduced by sand addition.

View Article and Find Full Text PDF

We investigated whether the parasite load of an individual could be predicted by its position in a social network. Specifically, we derived social networks in a solitary, territorial reptile (the tuatara, Sphenodon punctatus), with links based on the sharing of space, not necessarily synchronously, in overlapping territories. Tuatara are infected by ectoparasitic ticks (Amblyomma sphenodonti), mites (Neotrombicula spp.

View Article and Find Full Text PDF

Understanding the impacts of endemic parasites on protected hosts is an essential element of conservation management. However, where manipulative experiments are unethical, causality cannot be inferred from observational correlative studies. Instead, we used an experimental structure to explore temporal associations between body condition of a protected reptile, the tuatara (Sphenodon punctatus) and infestation with ectoparasites (ticks and mites).

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) genes are highly polymorphic components of the vertebrate immune system, which play a key role in pathogen resistance. MHC genes may also function as odour-related cues for mate choice, thus ensuring optimal MHC diversity in offspring. MHC-associated mate choice has been demonstrated in some fish, bird and mammal species but it is not known whether this is a general vertebrate phenomenon.

View Article and Find Full Text PDF
Article Synopsis
  • - The conservation status of 845 reef-building coral species was evaluated, revealing that 32.8% of the 704 assessed species are at a high risk of extinction due to factors like bleaching and diseases caused by rising sea temperatures.
  • - Human activities also worsen the risk of coral extinction, and the overall threat level for corals has significantly increased in recent decades compared to most land species.
  • - The Caribbean region has the highest percentage of corals in dangerous extinction categories, while the Coral Triangle has the largest number of species facing elevated extinction risks, highlighting the urgent need for effective coral conservation efforts.
View Article and Find Full Text PDF

Four stable carbenes, 1-tert-butyl-3,4-diaryl-1,2,4-triazol-5-ylidenes 1a-d, including new fluorine-containing compounds 1c,d, react with a malonic ester to afford heterocyclic zwitterionic compounds 5a-d. The reactions with more acidic compounds (ethyl acetoacetate, malononitrile and 1,3-dimethylbarbituric acid) proceed with substrate deprotonation to form the respective azolium salts 6a-c. The X-ray crystal structure of 5a was also determined.

View Article and Find Full Text PDF

The first examples of N,C-bonded beta-diketiminato phosphenium cations have been isolated as their triflate or tetrachloroaluminate salts, both of which have been structurally characterized.

View Article and Find Full Text PDF