Publications by authors named "Jennifer A Lau"

Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change.

View Article and Find Full Text PDF

Microbial communities can rapidly respond to stress, meaning plants may encounter altered soil microbial communities in stressful environments. These altered microbial communities may then affect natural selection on plants. Because stress can cause lasting changes to microbial communities, microbes may also cause legacy effects on plant selection that persist even after the stress ceases.

View Article and Find Full Text PDF

AbstractIn January 2018, Sharon Strauss, then president of the American Society of Naturalists, organized a debate on the following topic: does evolutionary history inform the current functioning of ecological communities? The debaters-Ives, Lau, Mayfield, and Tobias-presented pro and con arguments, caricatured in standard debating format. Numerous examples show that both recent microevolutionary and longer-term macroevolutionary history are important to the ecological functioning of communities. On the other hand, many other examples illustrate that the evolutionary history of communities or community members does not influence ecological function, or at least not very much.

View Article and Find Full Text PDF

Since Baker's attempt to characterize the 'ideal weed' over 50 years ago, ecologists have sought to identify features of species that predict invasiveness. Several of Baker's 'ideal weed' traits are well studied, and we now understand that many traits can facilitate different components of the invasion process, such as dispersal traits promoting transport or selfing enabling establishment. However, the effects of traits on invasion are context dependent.

View Article and Find Full Text PDF

In nature, plant species simultaneously interact with many different mutualistic partners. These mutualists may influence one another through direct interference or indirectly by competing for shared reward resources or through alteration of plant traits. Together, these mutualists also may combine to affect plant hosts in ways that may not be predictable based on pairwise interactions.

View Article and Find Full Text PDF

Premise: Anthropogenic nitrogen (N) addition alters the abiotic and biotic environment, potentially leading to changes in patterns of natural selection (i.e., trait-fitness relationships) and the opportunity for selection (i.

View Article and Find Full Text PDF

Microorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered soils.

View Article and Find Full Text PDF

Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments.

View Article and Find Full Text PDF

Genetic diversity and species diversity are typically studied in isolation despite theory showing they likely influence one another. Here, we used simplified communities of one or two populations of one or two species to test whether linkages between genetic and species diversity can be mediated by interactions between plants and their soil microbiota, or microbe-mediated plant-soil feedback (PSF). Interspecific PSF promotes the maintenance of species diversity when plants grow better with heterospecific soil microbes than with conspecific microbes.

View Article and Find Full Text PDF

Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g.

View Article and Find Full Text PDF

Restoration in this era of climate change comes with a new challenge: anticipating how best to restore populations to persist under future climate conditions. Specifically, it remains unknown whether locally adapted or warm-adapted seeds best promote native plant community restoration in the warmer conditions predicted in the future and whether local or warm-adapted soil microbial communities could mitigate plant responses to warming. This may be especially relevant for biomes spanning large climatic gradients, such as the North American tallgrass prairie.

View Article and Find Full Text PDF

Premise: Shifting phenology in response to climate is one mechanism that can promote population persistence and geographic spread; therefore, species with limited ability to phenologically track changing environmental conditions may be more susceptible to population declines. Alternatively, apparently nonresponding species may demonstrate divergent responses to multiple environmental conditions experienced across seasons.

Methods: Capitalizing on herbarium records from across the midwestern United States and on detailed botanical surveys documenting local extinctions over the past century, we investigated whether extirpated and extant taxa differ in their phenological responses to temperature and precipitation during winter and spring (during flowering and the growing season before flowering) or in the magnitude of their flowering time shift over the past century.

View Article and Find Full Text PDF

Interactions with microbial symbionts have yielded great macroevolutionary innovations across the tree of life, like the origins of chloroplasts and the mitochondrial powerhouses of eukaryotic cells. There is also increasing evidence that host-associated microbiomes influence patterns of microevolutionary adaptation in plants and animals. Here we describe how microbes can facilitate adaptation in plants and how to test for and differentiate between the two main mechanisms by which microbes can produce adaptive responses in higher organisms: microbe-mediated local adaptation and microbe-mediated adaptive plasticity.

View Article and Find Full Text PDF

Existing paradigms for plant microevolution rarely acknowledge the potential impacts of diverse microbiomes on evolutionary processes. Many plant-associated microorganisms benefit the host via access to resources, protection from pathogens, or amelioration of abiotic stress. In doing so, they alter the plant's perception of the environment, potentially reducing the strength of selection acting on plant stress tolerance or defence traits or altering the traits that are the target of selection.

View Article and Find Full Text PDF

When populations colonize new habitats, they are likely to experience novel environmental conditions, and as a consequence may experience strong selection. While selection and the resulting evolutionary responses may have important implications for establishment success in colonizing populations, few studies have estimated selection in such scenarios. Here we examined evidence of selection in recently established plant populations in two prairie restorations in close proximity (<15 km apart) using two approaches: (1) we tested for evidence of past selection on a suite of traits in two Chamaecrista fasciculata populations by comparing the restored populations to each other and their shared source population in common gardens to quantify evolutionary responses and (2) we measured selection in the field.

View Article and Find Full Text PDF

Premise: Nutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen.

View Article and Find Full Text PDF

Evolution in nature occurs in the proverbial tangled bank. The species interactions characterizing this tangled bank can be strongly affected by global change and can also influence the fitness and selective effects of a global change on a focal population. As a result, species interactions can influence which traits will promote adaptation and the magnitude or direction of evolutionary responses to the global change.

View Article and Find Full Text PDF

Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non-native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non-native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming.

View Article and Find Full Text PDF

Premise Of The Study: Human activities threaten thousands of species with extinction. However, it remains difficult to predict extinction risk for many vulnerable species. Species traits, species characteristics such as rarity or habitat use, and phylogenetic patterns are associated with responses to anthropogenic environmental change and may help predict likelihood of extinction.

View Article and Find Full Text PDF

Mutualists may play an important role in invasion success. The ability to take advantage of novel mutualists or survive and reproduce despite a lack of mutualists may facilitate invasion by those individuals with such traits. Here, we used two greenhouse studies to examine how soil microbial communities in general and mutualistic rhizobia in particular affect the performance of a legume species (Medicago polymorpha) that has invaded five continents.

View Article and Find Full Text PDF

Species invading new habitats experience novel selection pressures that can lead to rapid evolution, which may contribute to invasion success and/or increased impact on native community members. Many studies have hypothesized that plants in the introduced range will be larger than those in the native range, leading to increases in competitive ability. There is mixed support for evolution of larger sizes in the introduced range, but few studies have explicitly tested whether evolutionary changes result in decreased competitive responses or increased competitive effects on other species in the community.

View Article and Find Full Text PDF

Although most studies of mutualisms focus on a single partner at a time, host species often associate with multiple mutualist partners simultaneously. Because of potential interactions between mutualists, only studying a single type of mutualism could lead to a biased perspective of mutualism benefit and how mutualisms may scale-up to affect communities. The legume Chamaecrista fasciculata engages in a resource mutualism with nitrogen-fixing rhizobia and also forms symbiotic interactions with ants by providing nectar in exchange for defense against herbivores.

View Article and Find Full Text PDF

Leguminous crops, like soybeans, often rely on biologically fixed nitrogen via their symbiosis with rhizobia rather than synthetic nitrogen inputs. However, agricultural management practices may influence the effectiveness of biological nitrogen fixation (BNF). While the ecological effects of agricultural management on rhizobia have received some attention, the evolutionary effects have been neglected in comparison.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj93ksjac4uqtuh5u71dbn4ip1gs2tcg7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once