Publications by authors named "Jennifer A Kennell"

Background: miR-33 family members are well characterized regulators of cellular lipid levels in mammals. Previous studies have shown that overexpression of miR-33 in Drosophila melanogaster leads to elevated triacylglycerol (TAG) levels in certain contexts. Although loss of miR-33 in flies causes subtle defects in larval and adult ovaries, the effects of miR-33 deficiency on lipid metabolism and other phenotypes impacted by metabolic state have not yet been characterized.

View Article and Find Full Text PDF

Background: Insect pigmentation is a phenotypically plastic trait that plays a role in thermoregulation, desiccation tolerance, mimicry, and sexual selection. The extent and pattern of pigmentation of the abdomen and thorax in Drosophila melanogaster is affected by environmental factors such a growth temperature and access to the substrates necessary for melanin biosynthesis. This study aimed to determine the effect of nutritional status during development on adult pigmentation and test whether nutrient sensing through the Insulin/IGF and target of rapamycin (TOR) pathways regulates the melanization of adult cuticle in Drosophila.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally silence gene expression by binding to target mRNAs. Previous studies have identified the miRNA miR-8 as a pleiotropic regulator of Drosophila development, controlling body size and neuronal survival by targeting multiple mRNAs. In this study we demonstrate that miR-8 is also required for proper spatial patterning of pigment on the adult abdominal cuticle in females but not males.

View Article and Find Full Text PDF

Wnt signaling plays many important roles in animal development. This evolutionarily conserved signaling pathway is highly regulated at all levels. To identify regulators of the Wnt/Wingless (Wg) pathway, we performed a genetic screen in Drosophila.

View Article and Find Full Text PDF

Wnt signaling has been reported to block apoptosis and regulate differentiation of mesenchymal progenitors through inhibition of glycogen synthase kinase 3 and stabilization of beta-catenin. The effects of Wnt in preadipocytes may be mediated through Frizzled (Fz) 1 and/or Fz2 as these Wnt receptors are expressed in preadipocytes and their expression declines upon induction of differentiation. We ectopically expressed constitutively active chimeras between Wnt8 and Fz1 or Fz2 in preadipocytes and mesenchymal precursor cells.

View Article and Find Full Text PDF

We have cloned T-cell factor 4N (TCF-4N), an alternative isoform of TCF-4, from developing pituitary and 3T3-L1 preadipocytes. This protein contains the N-terminal interaction domain for beta-catenin but lacks the DNA binding domain. While TCF-4N inhibited coactivation by beta-catenin of a TCF/lymphoid-enhancing factor (LEF)-dependent promoter, TCF-4N potentiated coactivation by beta-catenin of several non-TCF/LEF-dependent promoters.

View Article and Find Full Text PDF

Ectopic expression of Wnt-1 in 3T3-L1 preadipocytes stabilizes beta-catenin, activates TCF-dependent gene transcription, and blocks adipogenesis. Here we report that upon serum withdrawal, Wnt-1 causes 3T3-L1 cells to resist apoptosis through a mechanism that is partially dependent on phosphatidylinositol 3-kinase. Although activation of Wnt signaling by inhibition of GSK-3 activity or ectopic expression of dominant stable beta-catenin blocks apoptosis, inhibition of Wnt signaling through expression of dominant negative TCF-4 increases apoptosis.

View Article and Find Full Text PDF