Publications by authors named "Jennifer A Hackett"

Retroviral short hairpin RNA (shRNA)-mediated genetic screens in mammalian cells are powerful tools for discovering loss-of-function phenotypes. We describe a highly parallel multiplex methodology for screening large pools of shRNAs using half-hairpin barcodes for microarray deconvolution. We carried out dropout screens for shRNAs that affect cell proliferation and viability in cancer cells and normal cells.

View Article and Find Full Text PDF

Telomere dysfunction causes genomic instability. However, the mechanism that initiates this instability when telomeres become short is unclear. We measured the mutation rate and loss of heterozygosity along a chromosome arm in diploid yeast that lacked telomerase to distinguish between mechanisms for the initiation of instability.

View Article and Find Full Text PDF

Tumour growth is an evolutionary process that is characterized by the selection of clonal populations of cells that acquire distinct genetic changes. Many cancer therapies aim to exploit the specific changes that occur in cancer cells, but understanding the underlying mechanisms of genomic instability that cause these mutations could lead to more effective therapies. If common mechanisms exist for initiating genomic instability in tumours, selection could explain the differences in specific gene mutations that accumulate in different tumour types.

View Article and Find Full Text PDF

Telomere shortening and telomerase activation both occur in human tumors. Telomere shortening has been proposed to have two conflicting roles in tumorigenesis: tumor suppression and initiation of chromosomal instability. Similarly, while telomerase activation is suggested to be necessary for tumor growth, telomerase may help to stabilize genomic instability.

View Article and Find Full Text PDF