Publications by authors named "Jennifer A Erwin"

DNA repetitive sequences (or repeats) comprise over 50% of the human genome and have a crucial regulatory role, specifically regulating transcription machinery. The human brain is the tissue with the highest detectable repeat expression and dysregulations on the repeat activity are related to several neurological and neurodegenerative disorders, as repeat-derived products can stimulate a pro-inflammatory response. Even so, it is unclear how repeat expression acts on the aging neurotypical brain.

View Article and Find Full Text PDF

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Primary human trophoblast stem cells (TSCs) and those derived from human pluripotent stem cells (hPSCs) can be modeled in the lab, but how hPSCs differentiate into TSCs is not well understood.
  • This study shows that a specific primed pluripotent state can produce TSCs by activating certain pathways (like EGF and WNT) and inhibiting others (like TGFβ and ROCK), all without adding BMP4, referred to as the TS condition.
  • The researchers found that the TSCs generated under TS conditions can proliferate extensively and closely resemble first-trimester placental cells, suggesting that primed hPSCs can differentiate into TSCs through various
View Article and Find Full Text PDF

Objective: Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs).

View Article and Find Full Text PDF

Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform.

View Article and Find Full Text PDF

X-linked Dystonia-Parkinsonism (XDP) is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. The mechanisms underlying regional differences in degeneration and adult onset are unknown.

View Article and Find Full Text PDF

retroelements propagate via retrotransposition by hijacking long interspersed nuclear element-1 (L1) reverse transcriptase (RT) and endonuclease activities. Reverse transcription of RNA into complementary DNA (cDNA) is presumed to occur exclusively in the nucleus at the genomic integration site. Whether cDNA is synthesized independently of genomic integration is unknown.

View Article and Find Full Text PDF

Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression.

View Article and Find Full Text PDF

Despite extensive genetic and neuroimaging studies, detailed cellular mechanisms underlying schizophrenia and bipolar disorder remain poorly understood. Recent progress in single-cell RNA sequencing (scRNA-seq) technologies enables identification of cell-type-specific pathophysiology. However, its application to psychiatric disorders is challenging because of methodological difficulties in analyzing human brains and the confounds due to a lifetime of illness.

View Article and Find Full Text PDF
Article Synopsis
  • The study created induced pluripotent stem (iPS) cell lines using fibroblasts from the dura mater of four deceased individuals who had low genetic risk for psychiatric disorders like schizophrenia and bipolar disorder.
  • The fibroblasts were reprogrammed into iPS cells using specific genetic factors delivered through episomal vectors.
  • All iPS cell lines maintained the same genetic profile as the original brain tissues, expressed markers indicating pluripotency, and demonstrated the ability to differentiate into all three embryonic germ layers.
View Article and Find Full Text PDF

The human brain is composed of a complex assembly of about 171 billion heterogeneous cellular units (86 billion neurons and 85 billion non-neuronal glia cells). A comprehensive description of brain cells is necessary to understand the nervous system in health and disease. Recently, advances in genomics have permitted the accurate analysis of the full transcriptome of single cells (scRNA-seq).

View Article and Find Full Text PDF

Despite widespread interest in using human induced pluripotent stem cells (hiPSCs) in neurological disease modeling, a suitable model system to study human neuronal connectivity is lacking. Here, we report a comprehensive and efficient differentiation paradigm for hiPSCs that generate multiple CA3 pyramidal neuron subtypes as detected by single-cell RNA sequencing (RNA-seq). This differentiation paradigm exhibits characteristics of neuronal network maturation, and rabies virus tracing revealed synaptic connections between stem cell-derived dentate gyrus (DG) and CA3 neurons in vitro recapitulating the neuronal connectivity within the hippocampus.

View Article and Find Full Text PDF

Somatic mosaicism refers to the fact that cells within an organism have different genomes. It is now clear that somatic mosaicism occurs in all brains and that somatic mutations in a subset of cells can cause various rare neurodevelopmental disorders. However, for most individuals, the extent and consequences of somatic mosaicism are largely unknown.

View Article and Find Full Text PDF

Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk.

View Article and Find Full Text PDF

The healthy human brain is a mosaic of varied genomes. Long interspersed element-1 (LINE-1 or L1) retrotransposition is known to create mosaicism by inserting L1 sequences into new locations of somatic cell genomes. Using a machine learning-based, single-cell sequencing approach, we discovered that somatic L1-associated variants (SLAVs) are composed of two classes: L1 retrotransposition insertions and retrotransposition-independent L1-associated variants.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell sequencing methods are valuable for identifying different cell types in specific brain regions and understanding how activated neurons respond to experiences.
  • The study demonstrates that single-nuclei RNA-sequencing (snRNA-seq) effectively captures the changes in gene expression associated with neuronal activity, including the induction of immediate early genes like Fos, Arc, and Egr1.
  • Analysis of mouse dentate granule cells shows significant transcriptional changes after exposure to a new environment, revealing distinct activation states and providing insights into neuronal activation patterns beyond just immediate early genes.
View Article and Find Full Text PDF
Article Synopsis
  • - A protocol is outlined for isolating and sequencing the transcriptome of cell nuclei, involving FACS sorting, cDNA library construction, and RNA sequencing analysis.
  • - This method improves on previous single-cell RNA-seq techniques by isolating nuclei at low temperatures to minimize transcriptome alteration, allowing for accurate data collection, even from postmortem human brain tissue.
  • - The approach reveals unique nuclear biological features, such as specific transcript enrichment, and takes roughly four days to prepare cDNA libraries for sequencing.
View Article and Find Full Text PDF

CTCF is a master regulator that plays important roles in genome architecture and gene expression. How CTCF is recruited in a locus-specific manner is not fully understood. Evidence from epigenetic processes, such as X chromosome inactivation (XCI), indicates that CTCF associates functionally with RNA.

View Article and Find Full Text PDF

Mobile elements are DNA sequences that can change their position (retrotranspose) within the genome. Although its biological function is largely unappreciated, DNA derived from mobile elements comprises nearly half of the human genome. It has long been thought that neuronal genomes are invariable; however, recent studies have demonstrated that mobile elements actively retrotranspose during neurogenesis, thereby creating genomic diversity between neurons.

View Article and Find Full Text PDF

In the early mammalian embryo, X chromosome inactivation (XCI) achieves dosage parity between males and females for X-linked genes. During mouse development, imprinted paternal XCI is observed first and switches to random XCI in the epiblast but not placental lineages. The mechanism by which this epigenetic switch occurs is currently unknown.

View Article and Find Full Text PDF