Proteomic analyses of zebra finch (Taeniopygia guttata) optic tectum resulted in identification of 176 proteins. In the Swissprot database, only 52 proteins were identified as bird homologs and only 71 proteins were identified in songbird transcriptome databases, reflecting a lack of completeness in the T. guttata genomic sequence.
View Article and Find Full Text PDFProteomic analyses of male songbird (Zebra finch; Taeniopygia guttata; ZF) retina were performed resulting in identification of 129 proteins. Comparison of T. guttata retinal proteome with that of chicken found proteins detected in both retinas.
View Article and Find Full Text PDFThe development of peptide-based vaccines that are useful in the therapeutic treatment of melanoma and other cancers ultimately requires the identification of a sufficient number of antigenic peptides so that most individuals, regardless of their major histocompatibility complex (MHC)-encoded class I molecule phenotype, can develop a cytotoxic T lymphocyte (CTL) response against one or more peptide components of the vaccine. While it is relatively easy to identify antigenic peptides that are presented by the most prevalent MHC class I molecules in the population, it is problematic to identify antigenic peptides that are presented by MHC class I molecules that have less frequent expression in the population. One manner in which this problem can be overcome is by taking advantage of known MHC class I supertypes, which are groupings of MHC class I molecules that bind peptides sharing a common motif.
View Article and Find Full Text PDF