Bioorg Med Chem Lett
January 2021
MLS1082 is a structurally novel pyrimidone-based D1-like dopamine receptor positive allosteric modulator. Potentiation of D1 dopamine receptor (D1R) signaling is a therapeutic strategy for treating neurocognitive disorders. Here, we investigate the relationship between D1R potentiation and two prominent structural features of MLS1082, namely the pendant N-aryl and C-alkyl groups on the pyrimidone ring.
View Article and Find Full Text PDFThe Division of Cancer Prevention and the Division of Cancer Biology at the National Cancer Institute and the Gynecologic Health and Disease Branch in the National Institute of Child Health and Human Development organized a workshop in April 2019 to explore current insights into the progression of gynecologic cancers from benign conditions. Working groups were formed based on 3 gynecologic disease types: (1) Endometriosis or Endometrial Cancer and Endometrial-Associated Ovarian Cancer, (2) Uterine Fibroids (Leiomyoma) or Leiomyosarcoma, and (3) Adenomyosis or Adenocarcinoma. In this report, we highlight the key questions and current challenges that emerged from the working group discussions and present potential research opportunities that may advance our understanding of the progression of gynecologic benign conditions to cancer.
View Article and Find Full Text PDFThe D dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D receptor agonists possess known clinical liabilities. We discovered two structurally distinct D receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library.
View Article and Find Full Text PDFPeptide nucleic acid scaffolds represent a promising tool to interrogate the multivalent effects of ligand binding to a membrane receptor. Dopamine D2 receptors (D2R) are a class of G-protein coupled receptors (GPCRs), and the formation of higher-ordered structures of these receptors has been associated with the progression of several neurological diseases. In this Letter, we describe the synthesis of a library of ligand-modified PNAs bearing a known D2R agonist, (±)-PPHT.
View Article and Find Full Text PDFThe D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted β-arrestin recruitment, and D1R internalization using live cell functional assays.
View Article and Find Full Text PDFRationale: (-)-Stepholidine is a tetrahydroberberine alkaloid that is known to interact with dopamine receptors and has also been proposed as a novel antipsychotic agent. Its suggested novelty lies in the fact that it has been proposed to have D1-like receptor agonist and D2-like receptor antagonist properties. Thus, it might be effective in treating both positive and negative (cognition) symptoms of schizophrenia.
View Article and Find Full Text PDFA high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and β-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate β-arrestin recruitment.
View Article and Find Full Text PDFThe D2 dopamine receptor (D2 DAR) is one of the most validated drug targets for neuropsychiatric and endocrine disorders. However, clinically approved drugs targeting D2 DAR display poor selectivity between the D2 and other receptors, especially the D3 DAR. This lack of selectivity may lead to undesirable side effects.
View Article and Find Full Text PDFBrain cytochrome P450 epoxygenases were recently shown to play an essential role in mediating the pain-relieving properties of morphine. To identify the CNS sites containing the morphine-relevant P450s, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space.
View Article and Find Full Text PDFConverging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic.
View Article and Find Full Text PDFObjective: To determine whether cognitive therapy is effective in preventing the worsening of emerging psychotic symptoms experienced by help seeking young people deemed to be at risk for serious conditions such as schizophrenia.
Design: Multisite single blind randomised controlled trial.
Setting: Diverse services at five UK sites.
The search for the mechanism of action of improgan (a nonopioid analgesic) led to the recent discovery of CC12, a compound that blocks improgan antinociception. Because CC12 is a cytochrome P450 inhibitor, and brain P450 mechanisms were recently shown to be required in opioid analgesic signaling, pharmacological and transgenic studies were performed in rodents to test the hypothesis that improgan antinociception requires brain P450 epoxygenase activity. Intracerebroventricular (i.
View Article and Find Full Text PDFTo assess the importance of brain cytochrome P450 (P450) activity in mu opioid analgesic action, we generated a mutant mouse with brain neuron-specific reductions in P450 activity; these mice showed highly attenuated morphine antinociception compared with controls. Pharmacological inhibition of brain P450 arachidonate epoxygenases also blocked morphine antinociception in mice and rats. Our findings indicate that a neuronal P450 epoxygenase mediates the pain-relieving properties of morphine.
View Article and Find Full Text PDF