Nowadays, there is increasing number of electrochemical biosensors which utilize chitosan (Ch); as an enzyme immobilization matrix, and conductive nanomaterials; as electron carriers improving sensitivity of the biosensor. However, the challenge these sensors face is the lack of uniform dispersion of nanomaterials throughout the Ch film, which can negatively affect analytical performance of the biosensor. In this study, we report the development of an enzyme immobilization matrix that displays enhanced electrochemical performance thanks to a novel conductive thin film prepared via in situ electrocopolymerization of pyrrole (Py) and thiophene-grafted chitosan (Th-Ch).
View Article and Find Full Text PDF