Publications by authors named "Jenni Risler"

Article Synopsis
  • New drugs for tuberculosis are urgently needed due to the rise of multi-drug-resistant strains, and targeting Mycobacterium tuberculosis cytidylate kinase could be a potential approach.
  • Researchers chose to focus on Mycobacterium smegmatis cytidylate kinase for screening because its structure is well-defined and likely similar to the tuberculosis variant.
  • Despite screening nearly 20,000 compounds, all potential inhibitors were ruled out in follow-up tests, suggesting that this enzyme may be a challenging target for drug development.
View Article and Find Full Text PDF

Background: Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event.

Results: To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition.

View Article and Find Full Text PDF

Expression of isotopically labeled peptide standards as artificial concatamers (QconCATs) allows for the multiplex quantification of proteins in unlabeled samples by mass spectrometry. We have developed a generalizable QconCAT design strategy, which we term IQcat, wherein concatenated peptides are binned by pI to facilitate MS-sample enrichment by isoelectric focusing. Our method utilizes a rapid (∼2 weeks), inexpensive and scalable purification of arg/lys labeled IQcat standards in the Escherichia coli auxotroph AT713.

View Article and Find Full Text PDF

Multiple reaction monitoring mass spectrometry (MRM-MS) is a targeted analysis method that has been increasingly viewed as an avenue to explore proteomes with unprecedented sensitivity and throughput. We have developed a software tool, called MaRiMba, to automate the creation of explicitly defined MRM transition lists required to program triple quadrupole mass spectrometers in such analyses. MaRiMba creates MRM transition lists from downloaded or custom-built spectral libraries, restricts output to specified proteins or peptides, and filters based on precursor peptide and product ion properties.

View Article and Find Full Text PDF

Multiple reaction monitoring mass spectrometry (MRM-MS) is a technique for high-sensitivity targeted analysis. In proteomics, MRM-MS can be used to monitor and quantify a peptide based on the production of expected fragment peaks from the selected peptide precursor ion. The choice of which fragment ions to monitor in order to achieve maximum sensitivity in MRM-MS can potentially be guided by existing MS/MS spectra.

View Article and Find Full Text PDF

Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach.

View Article and Find Full Text PDF

Hereditary sensory and autonomic neuropathy (HSAN) type II is an autosomal recessive disorder characterized by impairment of pain, temperature, and touch sensation owing to reduction or absence of peripheral sensory neurons. We identified two large pedigrees segregating the disorder in an isolated population living in Newfoundland and performed a 5-cM genome scan. Linkage analysis identified a locus mapping to 12p13.

View Article and Find Full Text PDF

Juvenile hemochromatosis is an early-onset autosomal recessive disorder of iron overload resulting in cardiomyopathy, diabetes and hypogonadism that presents in the teens and early 20s (refs. 1,2). Juvenile hemochromatosis has previously been linked to the centromeric region of chromosome 1q (refs.

View Article and Find Full Text PDF