Publications by authors named "Jennefer Kohler"

Purpose: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in 4 siblings.

View Article and Find Full Text PDF

Purpose: We aimed to adapt and validate an existing patient-reported outcome measure, the personal-utility (PrU) scale, for use in the pediatric genomic context.

Methods: We adapted the adult version of the PrU and obtained feedback from 6 parents whose child had undergone sequencing. The resulting measure, the Parent PrU, was administered to parents of children in 4 pediatric cohorts of the Clinical Sequencing Evidence-Generating Research consortium after they received their children's genomic results.

View Article and Find Full Text PDF

In most eukaryotic cells, fatty acid synthesis (FAS) occurs in the cytoplasm and in mitochondria. However, the relative contribution of mitochondrial FAS (mtFAS) to the cellular lipidome is not well defined. Here we show that loss of function of Drosophila mitochondrial enoyl coenzyme A reductase (Mecr), which is the enzyme required for the last step of mtFAS, causes lethality, while neuronal loss of Mecr leads to progressive neurodegeneration.

View Article and Find Full Text PDF

Purpose: People report experiencing value from learning genomic results even in the absence of clinically actionable information. Such personal utility has emerged as a key concept in genomic medicine. The lack of a validated patient-reported outcome measure of personal utility has impeded the ability to assess this concept among those receiving genomic results and evaluate the patient-perceived value of genomics.

View Article and Find Full Text PDF

Background: Missense variants in genes are often found in patients with an Alport syndrome-like presentation, but their pathogenicity is not always clear. We encountered a woman with microscopic hematuria and proteinuria at 33 years of age with a diagnosis of thin basement membrane disease who was approaching end stage kidney disease at 59 years of age. We hypothesized that this patient's kidney disease was within the spectrum of Alport syndrome.

View Article and Find Full Text PDF

Purpose: Next-generation sequencing (NGS) has revolutionized the diagnostic process for rare/ultrarare conditions. However, diagnosis rates differ between analytical pipelines. In the National Institutes of Health-Undiagnosed Diseases Network (UDN) study, each individual's NGS data are concurrently analyzed by the UDN sequencing core laboratory and the clinical sites.

View Article and Find Full Text PDF

Given the limited therapeutic options for most rare diseases diagnosed through genomic sequencing (GS) and the proportion of patients who remain undiagnosed even after GS, it is important to characterize a broader range of benefits and potential harms of GS from the perspectives of families with diverse sociodemographic characteristics. We recruited parents of children enrolled in the Undiagnosed Diseases Network. Parents completed an in-depth interview, and we conducted a comparative content analysis of the data.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic counselors (GCs) are becoming essential team members in research studies, particularly within the Undiagnosed Diseases Network (UDN), where their roles are varied but not well-documented.
  • A two-part survey was conducted with UDN GCs to identify and quantify their roles, revealing that respondents reported performing an average of 50 distinct roles, with a total of 947 role selections across 19 participants.
  • Thematic analysis led to the identification of 20 specific roles grouped into three main themes: clinical care, collaboration, and curation, showcasing the valuable skills GCs bring to clinical translational research efforts.
View Article and Find Full Text PDF

Parents of children with undiagnosed conditions struggle to obtain information about how to treat and support their children. It can be particularly challenging to find communities and other parents who share their experiences and can provide emotional and informational support. This study sought to characterize how parents use social media, both throughout the diagnostic odyssey and post-diagnosis, to meet their informational, social, and emotional support needs.

View Article and Find Full Text PDF

Objective: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years.

Methods: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and single-gene sequencing (n = 104). We further queried WES repositories for variants and measured blood levels of the -encoded protein neprilysin.

View Article and Find Full Text PDF
Article Synopsis
  • The NIH Undiagnosed Diseases Network (UDN) focuses on helping individuals with disorders that lack a clear diagnosis by utilizing personalized clinical and genomic evaluations alongside innovative research.
  • A study of data from four UDN clinical sites revealed that out of 791 participants, 231 received diagnoses and 17 new disease-gene associations were identified, with many requiring advanced UDN-specific investigations rather than standard clinical methods.
  • The findings highlight the effectiveness of UDN-driven investigations in uncovering new diagnoses and advancing genomic medicine, presenting a more effective model than traditional diagnostic practices.
View Article and Find Full Text PDF
Article Synopsis
  • ALG13 is crucial for synthesizing a specific molecule necessary for glycosylation, and mutations in this gene cause a rare form of epilepsy called EIEE36, also classified as ALG13-CDG.
  • Despite being a glycosylation disorder, cases of ALG13-CDG do not exhibit the expected glycosylation defects typically found in other disorders.
  • A study identified 29 new cases affected by ALG13 mutations, revealing a high prevalence of West syndrome, with patients responding well to certain treatments like adrenocorticotropic hormone and a ketogenic diet for managing epilepsy.
View Article and Find Full Text PDF
Article Synopsis
  • Developmental and epileptic encephalopathies (DEEs) are serious genetic disorders that cause seizures and problems with development in kids.
  • The study looked at 22 people from 15 families who had a severe form of epilepsy and found a specific genetic change in the UGP2 gene that was common among them.
  • This genetic change affects a protein important for the brain, leading to issues in how brain cells work and causing symptoms like vision problems and developmental delays.
View Article and Find Full Text PDF

Purpose: Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292).

Methods: We ascertained a cohort of 28 families with ID due to putatively pathogenic ZNF292 variants that were identified via targeted and exome sequencing.

View Article and Find Full Text PDF

Background: Despite growing evidence of diagnostic yield and clinical utility of whole exome sequencing (WES) in patients with undiagnosed diseases, there remain significant cost and reimbursement barriers limiting access to such testing. The diagnostic yield and resulting clinical actions of WES for patients who previously faced insurance coverage barriers have not yet been explored.

Methods: We performed a retrospective descriptive analysis of clinical WES outcomes for patients facing insurance coverage barriers prior to clinical WES and who subsequently enrolled in the Undiagnosed Diseases Network (UDN).

View Article and Find Full Text PDF
Article Synopsis
  • Medical training around the world isn't teaching enough about genetics and genomics, which is super important for doctors today.
  • To help fix this, a new elective class called 'Genomic Medicine and Undiagnosed Diseases' was created for Internal Medicine Residents.
  • This program aims to help doctors learn more about genetic testing and the role of genetics in both rare and common health issues.
View Article and Find Full Text PDF

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases.

View Article and Find Full Text PDF

There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis.

View Article and Find Full Text PDF

Phacomatosis pigmentovascularis (PPV) comprises a family of rare conditions that feature vascular abnormalities and melanocytic lesions that can be solely cutaneous or multisystem in nature. Recently published work has demonstrated that both vascular and melanocytic abnormalities in PPV of the cesioflammea and cesiomarmorata subtypes can result from identical somatic mosaic activating mutations in the genes GNAQ and GNA11. Here, we present three new cases of PPV with features of the cesioflammea and/or cesiomarmorata subtypes and mosaic mutations in GNAQ or GNA11.

View Article and Find Full Text PDF

We discuss a challenging case of a 58-year-old Vietnamese-American woman who presented to her new primary care provider with an 8-year history of slowly progressive dysphagia, hoarseness, muscle weakness with associated frequent falls, and weight loss. She eventually reported dry eyes and dry mouth, and she was diagnosed with Sjogren's syndrome. Subsequently, she was additionally diagnosed with inclusion body myositis and gastric light-chain (AL) amyloidosis.

View Article and Find Full Text PDF

With the wide adoption of next-generation sequencing (NGS)-based genetic tests, genetic counselors require increased familiarity with NGS technology, variant interpretation concepts, and variant assessment tools. The use of exome and genome sequencing in clinical care has expanded the reach and diversity of genetic testing. Regardless of the setting where genetic counselors are performing variant interpretation or reporting, most of them have learned these skills from colleagues, while on the job.

View Article and Find Full Text PDF

Purpose: Diagnosing monogenic diseases facilitates optimal care, but can involve the manual evaluation of hundreds of genetic variants per case. Computational tools like Phrank expedite this process by ranking all candidate genes by their ability to explain the patient's phenotypes. To use these tools, busy clinicians must manually encode patient phenotypes from lengthy clinical notes.

View Article and Find Full Text PDF

ATP synthase, H transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.

View Article and Find Full Text PDF

Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples.

View Article and Find Full Text PDF