Circulating cell-free tumor DNA (ctDNA) can serve as a real-time biomarker of tumor burden and provide unique insights into the evolving molecular landscape of cancers under the selective pressure of immunotherapy. Tracking the landscape of genomic alterations detected in ctDNA may reveal the clonal architecture of the metastatic cascade and thus improve our understanding of the molecular wiring of therapeutic responses. While liquid biopsies may provide a rapid and accurate evaluation of tumor burden dynamics during immunotherapy, the complexity of antitumor immune responses is not fully captured through single-feature ctDNA analyses.
View Article and Find Full Text PDFBackground: Despite treatment advancements with immunotherapy, our understanding of response relies on tissue-based, static tumor features such as tumor mutation burden (TMB) and programmed death-ligand 1 (PD-L1) expression. These approaches are limited in capturing the plasticity of tumor-immune system interactions under selective pressure of immune checkpoint blockade and predicting therapeutic response and long-term outcomes. Here, we investigate the relationship between serial assessment of peripheral blood cell counts and tumor burden dynamics in the context of an evolving tumor ecosystem during immune checkpoint blockade.
View Article and Find Full Text PDFBackground: Physicians spend less time at the bedside in the modern hospital setting which has contributed to a decline in physical diagnosis, and in particular, cardiopulmonary examination skills. This trend may be a source of diagnostic error and threatens to erode the patient-physician relationship. We created a new bedside cardiopulmonary physical diagnosis curriculum and assessed its effects on post-graduate year-1 (PGY-1; interns) attitudes, confidence and skill.
View Article and Find Full Text PDFCell free DNA (cfDNA) are short fragments of nucleic acids present in circulation outside of cells. In patients with cancer, some portion of cfDNA is derived from tumor cells, termed circulating tumor DNA (ctDNA), and contains the same mutations and genetic changes as the cancer. The development of new, more effective methods to detect these changes has led to increased interest in developing ctDNA as a biomarker for cancer.
View Article and Find Full Text PDFAcute myeloid leukemia is a clinically and biologically heterogeneous disease. Standard induction chemotherapy, consisting of cytarabine and an anthracycline, has not changed substantially over several decades, and outcomes remain suboptimal, particularly in older patients. Many genetic and molecular changes have been identified that guide selection of post-remission therapy and for which targeted therapies are beginning to be developed and tested.
View Article and Find Full Text PDF