Publications by authors named "Jenna Schambach"

Permafrost thaw increases the bioavailability of ancient organic matter, facilitating microbial metabolism of volatile organic compounds (VOCs), carbon dioxide, and methane (CH). The formation of thermokarst (thaw) lakes in icy, organic-rich Yedoma permafrost leads to high CH emissions, and subsurface microbes that have the potential to be biogeochemical drivers of organic carbon turnover in these systems. However, to better characterize and quantify rates of permafrost changes, methods that further clarify the relationship between subsurface biogeochemical processes and microbial dynamics are needed.

View Article and Find Full Text PDF

The natural assemblage of a symbiotic bacterial microbiome (bacteriome) with microalgae in marine ecosystems is now being investigated as a means to increase algal productivity for industry. When algae are grown in open pond settings, biological contamination causes an estimated 30% loss of the algal crop. Therefore, new crop protection strategies that do not disrupt the native algal bacteriome are needed to produce reliable, high-yield algal biomass.

View Article and Find Full Text PDF

The potential benefits of adding raw, non-food, lignocellulosic plant material as a carbon source for mixotrophic growth of microalgae have previously been demonstrated. This approach has advantages over using traditional carbon sources like glucose or acetate due to wide-spread plant biomass availability and substrate recalcitrance to bacterial contamination. Here, we report the overall growth characteristics and explore the metabolic patterns of cultured in the presence raw plant substrate.

View Article and Find Full Text PDF

A novel cyclic flow photobioreactor, designed for the capture and recycle of CO using microalgae, was deployed at a coal-fired power plant. Scenedesmus acutus was cultured continuously for a four-month period, during which a biomass productivity of 0.1-0.

View Article and Find Full Text PDF