In recent years, numerous aptamers have been physisorbed on graphene oxide (GO) to develop fluorescence resonance energy transfer-based aptasensors using the fluorescence quenching property of GO. However, physisorbed aptasensors show poor signal reversibility and reproducibility as well as nonspecific probe displacement, and thereby are not suitable for many analytical applications. To overcome these problems when working with complex biological samples, we developed a facile and robust covalent surface functionalization technique for GO-based fluorescent aptasensors using a well-studied adenosine triphosphate binding aptamer (ABA).
View Article and Find Full Text PDFExtracellular measurement of uptake/release kinetics and associated concentration dependencies provides mechanistic insight into the underlying biochemical processes. Due to the recognized importance of preserving the natural diffusion processes within the local microenvironment, measurement approaches which provide uptake rate and local surface concentration of adherent cells in static media are needed. This paper reports a microelectrode array device and a methodology to measure uptake kinetics as a function of cell surface concentration in adherent 2D cell cultures in static fluids.
View Article and Find Full Text PDFDespite the increasingly recognized importance of the tumor microenvironment (TME) as a regulator of tumor progression, only few in vitro models have been developed to systematically study the effects of TME on tumor behavior in a controlled manner. Here we developed a three-dimensional (3D) in vitro model that recapitulates the physical and compositional characteristics of Glioblastoma (GBM) extracellular matrix (ECM) and incorporates brain stromal cells such as astrocytes and endothelial cell precursors. The model was used to evaluate the effect of TME components on migration and survival of various patient-derived GBM cell lines (GBM10, GBM43 and GBAM1) in the context of STAT3 inhibition.
View Article and Find Full Text PDFGenetically encoded molecular-protein sensors (GEMS) are engineered to sense and quantify a wide range of biological substances and events in cells, in vitro and even in vivo with high spatial and temporal resolution. Here, we aim to stably incorporate these proteins into a photopatternable matrix, while preserving their functionality, to extend the application of these proteins as spatially addressable optical biosensors. For this reason, we examined the fabrication of 3D hydrogel microtips doped with a genetically encoded fluorescent biosensor, GCaMP3, at the end of an optical fiber.
View Article and Find Full Text PDFSurface modification of microelectrodes is a central step in the development of microsensors and microsensor arrays. Here, we present an electrodeposition scheme based on voltage pulses. Key features of this method are uniformity in the deposited electrode coatings, flexibility in the overall deposition area, i.
View Article and Find Full Text PDFDiffuse infiltration across brain tissue is a hallmark of glioblastoma and the main cause of unsuccessful total resection that leads to tumor reappearance. A subpopulation termed glioblastoma stem cells (GSCs) has been directly related to aggressive invasion; nonetheless, their migratory characteristics and regulation by the microenvironment are still unknown. In this study, we developed a composite matrix of hyaluronan (HA) structurally supported by a collagen-oligomer fibril network to simulate the brain tumor extracellular matrix (ECM) composition.
View Article and Find Full Text PDFThe ability to design long-lasting intracortical implants hinges on understanding the factors leading to the loss of neuronal density and the formation of the glial scar. In this study, we modify a common in vitro mixed cortical culture model using lipopolysaccharide (LPS) to examine the responses of microglia, astrocytes, and neurons to microwire segments. We also use dip-coated polyethylene glycol (PEG), which we have previously shown can modulate impedance changes to neural microelectrodes, to control the cellular responses.
View Article and Find Full Text PDFThe reactive response of brain tissue to implantable intracortical microelectrodes is thought to negatively affect their recordable signal quality and impedance, resulting in unreliable longitudinal performance. The relationship between the progression of the reactive tissue into a glial scar and the decline in device performance is unclear. We show that exposure to a model protein solution in vitro and acute implantation result in both resistive and capacitive changes to electrode impedance, rather than purely resistive changes.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2013
Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes.
View Article and Find Full Text PDFSilver nanoparticles (Ag NPs) are gaining popularity as bactericidal agents in commercial products; however, the mechanisms of toxicity (MOT) of Ag NPs to other organisms are not fully understood. It is the goal of this research to determine differences in MOT induced by ionic Ag(+) and Ag NPs in Daphnia magna, by incorporating a battery of traditional and novel methods. Daphnia embryos were exposed to sublethal concentrations of AgNO3 and Ag NPs (130-650 ng/L), with uptake of the latter confirmed by confocal reflectance microscopy.
View Article and Find Full Text PDFType 1 diabetes is preceded by islet β-cell dysfunction, but the mechanisms leading to β-cell dysfunction have not been rigorously studied. Because immune cell infiltration occurs prior to overt diabetes, we hypothesized that activation of inflammatory cascades and appearance of endoplasmic reticulum (ER) stress in β-cells contributes to insulin secretory defects. Prediabetic nonobese diabetic (NOD) mice and control diabetes-resistant NOD-SCID and CD1 strains were studied for metabolic control and islet function and gene regulation.
View Article and Find Full Text PDFThis work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs.
View Article and Find Full Text PDFLiving hybrid materials that respond dynamically to their surrounding environment have important applications in bioreactors. Silica based sol-gels represent appealing matrix materials as they form a mesoporous biocompatible glass lattice that allows for nutrient diffusion while firmly encapsulating living cells. Despite progress in sol-gel cellular encapsulation technologies, current techniques typically form bulk materials and are unable to generate regular silica membranes over complex geometries for large-scale applications.
View Article and Find Full Text PDFWe report a novel optical biosensor platform using near-infrared fluorescent single-walled carbon nanotubes (SWNTs) functionalized with target-recognizing aptamer DNA for noninvasively detecting cell-signaling molecules in real time. Photoluminescence (PL) emission of aptamer-coated SWNTs is modulated upon selectively binding to target molecules, which is exploited to detect insulin using an insulin-binding aptamer (IBA) as a molecular recognition element. We find that nanotube PL quenches upon insulin recognition via a photoinduced charge transfer mechanism with a quenching rate of k(q) = 5.
View Article and Find Full Text PDFSignaling and insulin secretion in β cells have been reported to demonstrate oscillatory modes, with abnormal oscillations associated with type 2 diabetes. We investigated cellular glucose influx in β cells with a self-referencing (SR) microbiosensor based on nanomaterials with enhanced performance. Dose-response analyses with glucose and metabolic inhibition studies were used to study oscillatory patterns and transporter kinetics.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
The successful use of implantable neural microelectrodes as neuroprosthetic devices depends on the mitigation of the reactive tissue response of the brain. One of the factors affecting the ultimate severity of the reactive tissue response and the in vivo electrical properties of the microelectrodes is the initial adsorption of proteins onto the surface of the implanted microelectrodes. In this study we quantify the increase in microelectrode impedance magnitude at physiological frequencies following electrode immersion in a 10% bovine serum albumin (BSA) solution.
View Article and Find Full Text PDFBiomacromolecules
September 2009
Quaternized copolymers of 4-vinylpyridine and poly(ethylene glycol) methyl ether methacrylate are known to have antibacterial properties and have displayed biocompatibility in red blood cell hemolysis assays. The results from hemolysis assays have shown substantial promise, but the technique is rudimentary and only a first step toward the determination of biocompatibility. The present paper further explores the biocompatibility of these copolymers through comprehensive cell viability assays performed on Caco-2 human epithelial cells cultivated in vitro.
View Article and Find Full Text PDFChronic recording electrodes are a vital tool for brain research and neural prostheses. Despite decades of advances in recording technology, probe structures and implantation methods have changed little over time. Then as now, compressive insertion methods require probes to be constructed from hard, stiff materials, such as silicon, and contain a large diameter shank to penetrate the brain, particularly for deeper structures.
View Article and Find Full Text PDFIn this work we quantified the in vitro calibration relationships between high frequency electrical stimulation and GABA and glutamate release in both mature retinoic acid differentiated P19 neurons and immortalized embryonic cortical cells engineered to express glutamic acid decarboxylase, GAD65. Extracellular glutamate and GABA was quantified by 2D gas chromatography and time of flight mass spectrometry after stimulation at varying amplitudes and frequencies. Amplitude sweeps resulted in a linear calibration for P19 neurons; the level of neurotransmitter varied over one order of magnitude from ~ 200 pg/neuron to ~ 1.
View Article and Find Full Text PDFThe reactive tissue response of the brain to chronically implanted materials remains a formidable obstacle to stable recording from implanted microelectrodes. One approach to mitigate this response is to apply a bioactive coating in the form of an ultra-porous silica sol-gel, which can be engineered to improve biocompatibility and to enable local drug delivery. The first step in establishing the feasibility of such a coating is to investigate the effects of the coating on electrode properties.
View Article and Find Full Text PDFNitric oxide (NO) is an important cell-signaling molecule whose role in a variety of cellular processes such as differentiation and apoptosis depends strongly on its concentration and flux levels. This work describes and characterizes a novel nitric oxide releasing nanocomposite, capable of photostimulated NO flux that can by dynamically modulated in within a range of biological levels. This material mimics the common compartmentalization strategies used by living cells to achieve its novel features.
View Article and Find Full Text PDFCell-based biosensors (CBBs) are becoming important tools for biosecurity applications and rapid diagnostics in food microbiology for their unique capability of detecting physiologically hazardous materials. A multi-well plate-based biosensor containing B-cell hybridoma, Ped-2E9, encapsulated in type I collagen matrix, was developed for rapid detection of viable cells of pathogenic Listeria, the toxin listeriolysin O, and the enterotoxin from Bacillus species. This sensor measures the alkaline phosphatase release from infected Ped-2E9 cells colorimetrically.
View Article and Find Full Text PDFMultiscale computational modeling of drug delivery systems (DDS) is poised to provide predictive capabilities for the rational design of targeted drug delivery systems, including multi-functional nanoparticles. Realistic, mechanistic models can provide a framework for understanding the fundamental physico-chemical interactions between drug, delivery system, and patient. Multiscale computational modeling, however, is in its infancy even for conventional drug delivery.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
Microstimulation of neural tissue has become a widely-used technique for controlling neuronal responses with local electric fields as well as a therapeutic intervention for nervous system disorders such as epilepsy and Parkinson's disease. Of those afflicted by neurological diseases, many are or become tolerant to existing pharmaceuticals and are left with little recourse. Little is known about the necessary design criteria or efficacy of a hybrid neural prosthesis.
View Article and Find Full Text PDFChemical surface characterization of biologically modified sol-gel derived silica is critical but somewhat limited. This work demonstrates the ability of x-ray photoelectron spectroscopy (XPS) to characterize the surface chemistry of peptide modified sol-gel thin films based on the example of four different free peptide-silanes, denoted RGD, NID, KDI ,and YIG. The N 1s and C 1s peaks were found to be good fingerprints of the peptides, whereas O 1s overlapped with the signal of substrate oxygen and, therefore, the O 1s peak was not informative in the case of the thin films.
View Article and Find Full Text PDF