N-Heteroaromatics are key elements of pharmaceuticals, agrochemicals, and materials. N-Heteroarynes provide a scaffold to build these essential molecules but are underused because five-membered N-heteroarynes have been largely inaccessible on account of the strain of a triple bond in that small of a ring. On the basis of principles of metal-ligand interactions that are foundational to organometallic chemistry, in this work we report the stabilization of five-membered N-heteroarynes in the nickel coordination sphere.
View Article and Find Full Text PDFAn Ir-catalyzed regioselective hydroamination of allyl amines using aryl amines and catalyst-controlled regiodivergent hydroamination of allylic and homoallylic amines with aniline nucleophiles are reported. The directed hydroamination reactions afford a variety of 1,2-, 1,3-, and 1,4-diamines in good to excellent yields and high regio- and chemoselectivities. Mechanistic investigations suggests that the reactions are proceeding through an oxidative addition into the ArHN-H bond and that the observed regioselectivity is due to the selective formation of a 5- or 6-membered metalacyclic intermediate, depending on the catalyst employed.
View Article and Find Full Text PDFReported herein is a mechanistic investigation into the palladium-catalyzed decarboxylative cross-coupling of sodium benzoates and chloroarenes. The reaction was found to be first-order in Pd. A minimal substituent effect was observed with respect to chloroarene, and the reaction was zero-order with respect to chloroarene.
View Article and Find Full Text PDFTwo N-heterocyclic carbene ligands provide orthogonal chemoselectivity during the Pd-catalyzed Suzuki-Miyaura (SM) cross-coupling of chloroaryl triflates. The use of SIPr [SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene] leads to selective cross-coupling at chloride, while the use of SIMes [SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene] provides selective coupling at triflate. With most chloroaryl triflates and arylboronic acids, ligand-controlled selectivity is high (≥10:1).
View Article and Find Full Text PDFWe report Ni-catalyzed formal carboacylation of o-allylbenzamides with arylboronic acid pinacol esters. The reaction is triggered by oxidative addition of an activated amide C-N bond to a Ni(0) catalyst and proceeds via alkene insertion into a Ni(II)-acyl bond. The exo-selective carboacylation reaction generates 2-benzyl-2,3-dihydro-1H-inden-1-ones in moderate to high yields (46-99%) from a variety of arylboronic acid pinacol esters and substituted o-allylbenzamides.
View Article and Find Full Text PDF