Publications by authors named "Jenna Minami"

Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models.

View Article and Find Full Text PDF

Unlabelled: Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR).

View Article and Find Full Text PDF

Glioblastomas (GBMs) exhibit altered metabolism to support a variety of bioenergetic and biosynthetic demands for tumor growth, invasion, and drug resistance. Changes in glycolytic flux, oxidative phosphorylation, the pentose phosphate pathway, fatty acid biosynthesis and oxidation, and nucleic acid biosynthesis are observed in GBMs to help drive tumorigenesis. Both the genetic landscape of GBMs and the unique brain tumor microenvironment shape metabolism; therefore, an understanding of how both intrinsic and extrinsic factors modulate metabolism is becoming increasingly important for finding effect targets and therapeutics for GBM.

View Article and Find Full Text PDF