Publications by authors named "Jenna M Greve"

Antibiotic resistance demands innovative strategies and therapies. The pairs of antimicrobial peptides tested in this work show broad-spectrum synergy and are capable of interacting with diverse bacterial membranes. In most cases, the ATCUN motif enhanced the activity of peptides tested in combination.

View Article and Find Full Text PDF

The unrestricted use of antibiotics has led to rapid development of antibiotic resistance (AR) and renewed calls to address this serious problem. This review summarizes the most common mechanisms of antibiotic action, and in turn antibiotic resistance, as well as pathways to mitigate the harm. Focus is then turned to emerging antibiotic strategies, including antimicrobial peptides (AMPs), with a discussion of their modes of action, biochemical features, and potential challenges for their use as antibiotics.

View Article and Find Full Text PDF

Human aspartyl/asparaginyl beta-hydroxylase (HAAH) is a member of the superfamily of nonheme Fe2+/α-ketoglutarate (αKG) dependent oxygenase enzymes with a noncanonical active site. HAAH hydroxylates epidermal growth factor (EGF) like domains to form the β-hydroxylated product from substrate asparagine or aspartic acid and has been suggested to have a negative impact in a variety of cancers. In addition to iron, HAAH also binds divalent calcium, although the role of the latter is not understood.

View Article and Find Full Text PDF

Human aspartyl (asparaginyl) β-hydroxylase (HAAH), a unique iron and 2-oxoglutarate dependent oxygenase, has shown increased importance as a suspected oncogenic protein. HAAH and its associated mRNA are upregulated in a wide variety of cancer types, however, the current role of HAAH in the malignant transformation of cells is unknown. HAAH is suspected to play an important role in NOTCH signaling via selective hydroxylation of aspartic acid and asparagine residues of epidermal growth factor (EGF)-like domains.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are found throughout most kingdoms of life, are an important part of host immunity, and have been shown to act synergistically in various organisms to ameliorate bacterial infections. Herein, we report the synergistic behavior observed between two AMPs, Sub5 and CP10A, against E. coli.

View Article and Find Full Text PDF