Background: Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia.
Methods: We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS).
Background: Dyslipidemia, which is characterized by an unfavorable lipid profile, is a key risk factor for cardiovascular disease (CVD). Understanding the relationships between epigenetic aging and lipid levels may help guide early prevention and treatment efforts for dyslipidemia.
Methods: We used weighted linear regression to cross-sectionally investigate the associations between five measures of epigenetic age acceleration estimated from whole blood DNA methylation (HorvathAge Acceleration, HannumAge Acceleration, PhenoAge Acceleration, GrimAge Acceleration, and DunedinPACE) and four blood lipid measures (total cholesterol (TC), LDL-C, HDL-C, and triglycerides (TG)) in 3,813 participants (mean age = 70 years) from the Health and Retirement Study (HRS).