Publications by authors named "Jenna Jambeck"

Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle -from conception to implementation-with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision-makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system.

View Article and Find Full Text PDF

Plastic waste is a significant environmental pollutant that is difficult to monitor. We created a system of neural networks to analyze spectral, spatial, and temporal components of Sentinel-2 satellite data to identify terrestrial aggregations of waste. The system works at wide geographic scale, finding waste sites in twelve countries across Southeast Asia.

View Article and Find Full Text PDF

Efforts to understand macroplastic pollution have primarily focused on coastal and marine environments to the exclusion of freshwater, terrestrial, and urban ecosystems. To better understand macroplastics in the environment and their sources, a dual approach examining plastic input and leakage can be used. In this study, litter aggregation pathways at 40 survey sites with varying ambient population counts in the Ganges River Basin were surveyed in pre- and postmonsoon seasons.

View Article and Find Full Text PDF

Plastic pollution and climate change have commonly been treated as two separate issues and sometimes are even seen as competing. Here we present an alternative view that these two issues are fundamentally linked. Primarily, we explore how plastic contributes to greenhouse gas (GHG) emissions from the beginning to the end of its life cycle.

View Article and Find Full Text PDF

Marine plastics are considered to be a major threat to the sustainable use of marine and coastal resources of the Caribbean, on which the region relies heavily for tourism and fishing. To date, little work has quantified plastics within the Caribbean marine environment or examined their potential sources. This study aimed to address this by holistically integrating marine (surface water, subsurface water and sediment) and terrestrial sampling and Lagrangian particle tracking to examine the potential origins, flows and quantities of plastics within the Southern Caribbean.

View Article and Find Full Text PDF

Youth can impact environmental attitudes and behaviors among adults. Indeed, research on intergenerational learning has demonstrated the influence of young people on adults in their lives for myriad environmental topics. Intergenerational learning (IGL) refers to the bidirectional transfer of knowledge, attitudes, or behaviors from children to their parents or other adults and vice versa.

View Article and Find Full Text PDF

The COVID-19 pandemic has resulted in an unprecedented surge of production, consumption, and disposal of personal protective equipment (PPE) including face masks, disposable gloves, and disinfectant wipes, which are often made of single use plastic. Widespread public use of these items has imposed pressure on municipalities to properly collect and dispose of potentially infectious PPE. There has been a lack of structured monitoring efforts to quantify the emerging trend of improperly disposed of PPE debris.

View Article and Find Full Text PDF

Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment, but our understanding of the transport and fate through riparian systems is still largely unknown. Here we undertook a proof of concept study by applying open source tracking technology (both GPS (Global Positing System) cellular networks and satellite technology), which have been successfully used in many animal movement studies, to track the movements of individual plastic litter items (500 ml PET (polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges) and the Bay of Bengal.

View Article and Find Full Text PDF

Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.

View Article and Find Full Text PDF

Plastic pollution is a planetary threat, affecting nearly every marine and freshwater ecosystem globally. In response, multilevel mitigation strategies are being adopted but with a lack of quantitative assessment of how such strategies reduce plastic emissions. We assessed the impact of three broad management strategies, plastic waste reduction, waste management, and environmental recovery, at different levels of effort to estimate plastic emissions to 2030 for 173 countries.

View Article and Find Full Text PDF

Marine debris is defined as any manmade item, commonly plastics, which ends up in the ocean regardless of the source. Debris found along coastlines can cause harm or even death to nesting and hatchling sea turtles through ingestion, entrapment, or entanglement. Jekyll Island is a prominent nesting beach for loggerhead sea turtles with over 1700 emergences from 2012 to 2017.

View Article and Find Full Text PDF

The rapid growth of the use and disposal of plastic materials has proved to be a challenge for solid waste management systems with impacts on our environment and ocean. While recycling and the circular economy have been touted as potential solutions, upward of half of the plastic waste intended for recycling has been exported to hundreds of countries around the world. China, which has imported a cumulative 45% of plastic waste since 1992, recently implemented a new policy banning the importation of most plastic waste, begging the question of where the plastic waste will go now.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) (poly(3HB- co-3HHx)) thermoplastics are a promising biodegradable alternative to traditional plastics for many consumer applications. Biodegradation measured by gaseous carbon loss of several types of poly(3HB- co-3HHx) plastic was investigated under anaerobic conditions and aerobic seawater environments. Under anaerobic conditions, the biodegradation levels of a manufactured sheet of poly(3HB- co-3HHx) and cellulose powder were not significantly different from one another over 85 days with 77.

View Article and Find Full Text PDF
Article Synopsis
  • Plastics have surpassed other man-made materials in usage and are facing environmental concerns, but comprehensive global data about their disposal is needed.
  • A global analysis reveals that 8,300 million metric tons of virgin plastics have been produced, with 6,300 million metric tons of plastic waste generated by 2015.
  • Current trends suggest that by 2050, approximately 12,000 million metric tons of plastic waste will end up in landfills or the environment if waste management practices do not improve.
View Article and Find Full Text PDF

Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale.

View Article and Find Full Text PDF

Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.

View Article and Find Full Text PDF

Microbial fuel cells were designed and operated to treat landfill leachate while simultaneously producing electricity. Two designs were tested in batch cycles using landfill leachate as a substrate without inoculation (908 to 3,200 mg/L chemical oxygen demand (COD)): Circle (934 mL) and large-scale microbial fuel cells (MFC) (18.3 L).

View Article and Find Full Text PDF

Microbial fuel cells were designed and operated to treat landfill leachate while continuously producing power. Two different anodes were tested in batch cycles using landfill leachate as a substrate without inoculation: an activated carbon anode and biochar anode. In addition, a semi-continuous serpentine design was evaluated.

View Article and Find Full Text PDF

With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion.

View Article and Find Full Text PDF

Although phased out of many residential uses in the United States, the disposal of CCA-treated wood remains a concern because significant quantities have yet to be taken out of service, and it is commonly disposed in landfills. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills. The goal of this research was to simulate the complex chemical and biological activity of a construction and demolition (C&D) debris landfill containing a realistic quantity of CCA-treated wood (10% by mass), produce leachate, and then evaluate the arsenic, copper, and chromium concentrations in the leachate as an indication of what may occur in a landfill setting.

View Article and Find Full Text PDF

The US Environmental Protection Agency (US EPA) launched the Resource Conservation Challenge (RCC) in 2002 to help reduce waste and move towards more sustainable resource consumption. The objective of the RCC is to help communities, industries, and the public think in terms of materials management rather than waste disposal. Reducing cost, finding more efficient and effective strategies to manage municipal waste, and thinking in terms of materials management requires a holistic approach that considers life-cycle environmental tradeoffs.

View Article and Find Full Text PDF

Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world.

View Article and Find Full Text PDF