Age-Related Macular Degeneration (AMD) is a highly prevalent form of retinal disease amongst Western communities over 50 years of age. A hallmark of AMD pathogenesis is the accumulation of drusen underneath the retinal pigment epithelium (RPE), a biological process also observable in vitro. The accumulation of drusen has been shown to predict the progression to advanced AMD, making accurate characterisation of drusen in vitro models valuable in disease modelling and drug development.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC-derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age-related macular degeneration.
View Article and Find Full Text PDFDrug discovery for diseases such as Parkinson's disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson's disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes.
View Article and Find Full Text PDF