Publications by authors named "Jenna G Kelly"

Amblyopia is a developmental disorder that results from abnormal visual experience in early life. Amblyopia typically reduces visual performance in one eye. We studied the representation of visual motion information in area MT and nearby extrastriate visual areas in two monkeys made amblyopic by creating an artificial strabismus in early life, and in a single age-matched control monkey.

View Article and Find Full Text PDF

The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship.

View Article and Find Full Text PDF

There is substantial variation in the mean and variance of light levels (luminance and contrast) in natural visual scenes. Retinal ganglion cells maintain their sensitivity despite this variation using two adaptive mechanisms, which control how responses depend on luminance and on contrast. However, the nature of each mechanism and their interactions downstream of the retina are unknown.

View Article and Find Full Text PDF

The Kv3.1b potassium channel subunit, which facilitates the fast-spiking phenotype characteristic of parvalbumin (PV)-expressing inhibitory interneurons, is also expressed by subpopulations of excitatory neurons in macaque cortex. We have previously shown that V1 neurons expressing Kv3.

View Article and Find Full Text PDF

Layer 6 appears to perform a very important role in the function of macaque primary visual cortex, V1, but not enough is understood about the functional characteristics of neurons in the layer 6 population. It is unclear to what extent the population is homogeneous with respect to their visual properties or if one can identify distinct subpopulations. Here we performed a cluster analysis based on measurements of the responses of single neurons in layer 6 of primary visual cortex in male macaque monkeys () to achromatic grating stimuli that varied in orientation, direction of motion, spatial and temporal frequency, and contrast.

View Article and Find Full Text PDF

Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes.

View Article and Find Full Text PDF

The Kv3.1b potassium channel subunit is associated with narrow spike widths and fast-spiking properties. In macaque primary visual cortex (V1), subsets of neurons have previously been found to be Kv3.

View Article and Find Full Text PDF

One of the underlying principles of how mammalian circuits are constructed is the relative influence of feedforward to recurrent synaptic drive. It has been dogma in sensory systems that the thalamic feedforward input is relatively weak and that there is a large amplification of the input signal by recurrent feedback. Here we show that in trichromatic primates there is a major feedforward input to layer 4C of primary visual cortex.

View Article and Find Full Text PDF

In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown.

View Article and Find Full Text PDF

In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys () made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls.

View Article and Find Full Text PDF

A new framework for measuring densities of immunolabeled neurons across cortical layers was implemented that combines a confocal microscopy sampling strategy with automated analysis of 3D image stacks. Its utility was demonstrated by quantifying neuronal density in macaque cortical areas V1 and V2. A series of overlapping confocal image stacks were acquired, each spanning from the pial surface to the white matter.

View Article and Find Full Text PDF

Amblyopia is a developmental disorder resulting in poor vision in one eye. The mechanism by which input to the affected eye is prevented from reaching the level of awareness remains poorly understood. We recorded simultaneously from large populations of neurons in the supragranular layers of areas V1 and V2 in 6 macaques that were made amblyopic by rearing with artificial strabismus or anisometropia, and 1 normally reared control.

View Article and Find Full Text PDF

Prior reports demonstrate that simultaneity is judged less precisely in the right visual field (RVF) than in the left visual field (LVF). The present psychophysical study was conducted to provide new information about why and when (i.e.

View Article and Find Full Text PDF

We extended the investigation of the oblique effect in two novel ways: from stimulus-driven vision to visual attention and from space to time. Participants fixated the center of briefly flashed displays that contained a temporally varying Gabor stimulus in each of the four peripheral quadrants. Across trial blocks, we manipulated which two of the four peripheral stimuli were to be selected for a simultaneity judgment.

View Article and Find Full Text PDF

We examined interactions between and within the left and right visual hemifields using elementary visual tasks. Each trial required identifying a letter at fixation and then either discriminating the orientation of (experiment 1) or detecting (experiment 2) peripheral Gabor targets. On half the trials Gabor distracters were presented between the Gabor targets, and were either restricted to one lateral hemifield (unilateral condition) or presented across the left and right hemifields (bilateral condition).

View Article and Find Full Text PDF