Objective: To create a longitudinal near-peer mentorship program for medical students applying to otolaryngology.
Methods: A program for longitudinal near-peer mentorship was designed based on a needs analysis of senior medical students. Program objectives were to (1) provide didactic education on common otolaryngology consults, (2) facilitate resident-student networking, and (3) enable applicants to meet other students.
Mice with chronic cochlear implants can significantly contribute to our understanding of the relationship between cochlear health and implant function because of the availability of molecular tools for controlling conditions in the cochlea and transgenic lines modeling human disease. To date, research in implanted mice has mainly consisted of short-term studies, but since there are large changes in implant function following implant insertion trauma, and subsequent recovery in many cases, longer-term studies are needed to evaluate function and perception under stable conditions. Because frequent anesthetic administration can be especially problematic in mice, a chronic model that can be tested in the awake condition is desirable.
View Article and Find Full Text PDFDrug delivery to the inner ear is an ideal method to treat a wide variety of otologic conditions. A broad range of potential applications is just beginning to be explored. New approaches combine principles of inner ear pharmacokinetics with emerging technologies of drug delivery including novel delivery systems, drug-device combinations, and new categories of drugs.
View Article and Find Full Text PDFBackground: Proper spindle assembly and chromosome segregation rely on precise microtubule dynamics, which are governed in part by the kinesin-13 MCAK. MCAK microtubule depolymerization activity is inhibited by Aurora B-dependent phosphorylation, but the mechanism of this inhibition is not understood.
Results: Here, we develop the first Förster resonance energy transfer (FRET)-based biosensor for MCAK and show that MCAK in solution exists in a closed conformation mediated by an interaction between the C-terminal domain (CT) and the neck.