Publications by authors named "Jenn-Fang Chen"

Octahedral PbSe colloidal nanocrystals (NCs) are used to assemble a solid. Because of the special feature of the apexes of the octahedrons, the cross-sectional area of the inter-dot tunneling junctions is much smaller than that formed between spherical NCs. The inter-dot separation between NCs is easily adjusted by mild thermal treatment.

View Article and Find Full Text PDF

DEP is one of promising techniques for positioning nanomaterials into the desirable location for nanoelectronic applications. In contrast, the lithography technique is commonly used to make ultra-thin conducting wires and narrow gaps but, due to the limit of patterning resolution, it is not feasible to make electrical contacts on ultra-small nanomaterials for a bottom-up device fabrication. Thus, integrating the lithography and dielectrophoresis, a real bottom-up fabrication can be achieved.

View Article and Find Full Text PDF

An efficient p-doped transport layer composed of an ambipolar material, 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) and tungsten oxide (WO(3)) has been developed. The admittance spectroscopy studies show that the incorporation of WO(3) into MADN can greatly improve the hole injection and the conductivity of the device. Moreover, when this p-doped layer was incorporated in the tris(8-quinolinolato)aluminum-based device, it achieved a current efficiency of 4.

View Article and Find Full Text PDF

Quantum dots (QDs) have great potential in optical fiber communication applications were widely recognized. The structure of molecular beam epitaxy (MBE) grew InAsN QDs were investigated by transmission electron microscopy (TEM) and measured their optical properties by photoluminescence (PL). TEM images show that the InAsN QDs are irregular or oval shaped.

View Article and Find Full Text PDF