Publications by authors named "Jenko F"

Charged and quasineutral beams propagating through an unmagnetized plasma are subject to numerous collisionless instabilities on the small scale of the plasma skin depth. The electrostatic two-stream instability, driven by longitudinal and transverse wakefields, dominates for dilute beams. This leads to modulation of the beam along the propagation direction and, for wide beams, transverse filamentation.

View Article and Find Full Text PDF

In many fields of science, comprehensive and realistic computational models are available nowadays. Often, the respective numerical calculations call for the use of powerful supercomputers, and therefore only a limited number of cases can be investigated explicitly. This prevents straightforward approaches to important tasks like uncertainty quantification and sensitivity analysis.

View Article and Find Full Text PDF

The key result of the present work is the theoretical prediction and observation of the formation of a new type of transport barrier in fusion plasmas, called F-ATB (fast ion-induced anomalous transport barrier). As demonstrated through state-of-the-art global electrostatic and electromagnetic simulations, the F-ATB is characterized by a full suppression of the turbulent transport-caused by strongly sheared, axisymmetric E×B flows-and an increase of the neoclassical counterpart, albeit keeping the overall fluxes at significantly reduced levels. The trigger mechanism is shown to be a mainly electrostatic resonant interaction between suprathermal particles, generated via ion-cyclotron-resonance heating, and plasma microturbulence.

View Article and Find Full Text PDF

Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in tokamaks, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bayesian formalism, to perform model selection, i.e.

View Article and Find Full Text PDF

Turbulent transport is known to limit the plasma confinement of present-day optimized stellarators. To address this issue, a novel method to strongly suppress turbulence in such devices is proposed, namely the resonant wave-particle interaction of suprathermal particles-e.g.

View Article and Find Full Text PDF

We present results from a three-dimensional particle-in-cell simulation of plasma turbulence, resembling the plasma conditions found at kinetic scales of the solar wind. The spectral properties of the turbulence in the subion range are consistent with theoretical expectations for kinetic Alfvén waves. Furthermore, we calculate the local anisotropy, defined by the relation k_{∥}(k_{⊥}), where k_{∥} is a characteristic wave number along the local mean magnetic field at perpendicular scale l_{⊥}∼1/k_{⊥}.

View Article and Find Full Text PDF

We investigate numerically the Princeton magnetorotational instability (MRI) experiment and the effect of conducting axial boundaries or endcaps. MRI is identified and found to reach a much higher saturation than for insulating endcaps. This is probably due to stronger driving of the base flow by the magnetically rather than viscously coupled boundaries.

View Article and Find Full Text PDF

We analyze plasma heating in weakly collisional kinetic Alfvén wave turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.

View Article and Find Full Text PDF

We report the first observation of localized modulation of turbulent density fluctuations n[over ˜] (via beam emission spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives.

View Article and Find Full Text PDF

Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier-Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation.

View Article and Find Full Text PDF

Nonlinear energy transfer and dissipation in Alfvén wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range k(⊥)ρ(I)≳1.

View Article and Find Full Text PDF

Cyclic, nonhierarchical interactions among biological species represent a general mechanism by which ecosystems are able to maintain high levels of biodiversity. However, species coexistence is often possible only in spatially extended systems with a limited range of dispersal, whereas in well-mixed environments models for cyclic competition often lead to a loss of biodiversity. Here we consider the dispersal of biological species in a fluid environment, where mixing is achieved by a combination of advection and diffusion.

View Article and Find Full Text PDF

Turbulence is widely expected to limit the confinement and, thus, the overall performance of modern neoclassically optimized stellarators. We employ novel petaflop-scale gyrokinetic simulations to predict the distribution of turbulence fluctuations and the related transport scaling on entire stellarator magnetic surfaces and reveal striking differences to tokamaks. Using a stochastic global-search optimization method, we derive the first turbulence-optimized stellarator configuration stemming from an existing quasiomnigenous design.

View Article and Find Full Text PDF

The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results.

View Article and Find Full Text PDF

A gyrokinetic model of ion temperature gradient driven turbulence in magnetized plasmas is used to study the injection, nonlinear redistribution, and collisional dissipation of free energy in the saturated turbulent state over a broad range of driving gradients and collision frequencies. The dimensionless parameter L(T)/L(C), where L(T) is the ion temperature gradient scale length and L(C) is the collisional mean free path, is shown to parametrize a transition between a saturation regime dominated by nonlinear transfer of free energy to small perpendicular (to the magnetic field) scales and a regime dominated by dissipation at large scales in all phase space dimensions.

View Article and Find Full Text PDF

Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys.

View Article and Find Full Text PDF

Turbulence is generally associated with universal power-law spectra in scale ranges without significant drive or damping. Although many examples of turbulent systems do not exhibit such an inertial range, power-law spectra may still be observed. As a simple model for such situations, a modified version of the Kuramoto-Sivashinsky equation is studied.

View Article and Find Full Text PDF

A hitherto unexplained feature of electromagnetic simulations of ion temperature gradient turbulence is the apparent failure of the transport levels to saturate for certain parameters; this effect, termed here nonzonal transition, has been referred to as the high-β runaway. The resulting large heat fluxes are shown to be a consequence of reduced zonal flow activity, brought on by magnetic field perturbations shorting out flux surfaces.

View Article and Find Full Text PDF

The nature of nonlinear interactions in gyrokinetic turbulence, driven by the ion-temperature gradient instability, is investigated using direct numerical simulations in toroidal flux tube geometry. To account for the level of separation existing between scales involved in an energetic interaction, the degree of locality of the free energy scale flux is analyzed employing Kraichnan's infrared (IR) and ultraviolet locality functions. Because of the nontrivial dissipative nature of gyrokinetic turbulence, an asymptotic level for the locality exponents, indicative of a universal dynamical regime for gyrokinetics, is not recovered and an accentuated nonlocal behavior of the IR interactions is found instead, in spite of the local energy cascade observed.

View Article and Find Full Text PDF

The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation in geo- and astrophysical systems. Recent experimental and numerical results show that turbulence constitutes an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry of experimental interest and propose a strategy for facilitating the dynamo instability by manipulating these detrimental "hidden" dynamics.

View Article and Find Full Text PDF

Nonlinear excitation of linearly stable microtearing modes--with zonal modes acting as a catalyst--is shown to be responsible for the near-ubiquitous magnetic stochasticity and associated electromagnetic electron heat transport in electromagnetic gyrokinetic simulations of plasma microturbulence.

View Article and Find Full Text PDF

The nonlinear dynamics of microtearing modes in standard tokamak plasmas are investigated by means of ab initio gyrokinetic simulations. The saturation levels of the magnetic field fluctuations can be understood in the framework of a balance between (small poloidal wave number) linear drive and small-scale dissipation. The resulting heat transport is dominated by the electron magnetic component, and the transport levels are found to be experimentally relevant.

View Article and Find Full Text PDF

In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field.

View Article and Find Full Text PDF

In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence.

View Article and Find Full Text PDF

The scaling of turbulence-driven heat transport with system size in magnetically confined plasmas is reexamined using first-principles based numerical simulations. Two very different numerical methods are applied to this problem, in order to resolve a long-standing quantitative disagreement, which may have arisen due to inconsistencies in the geometrical approximation. System size effects are further explored by modifying the width of the strong gradient region at fixed system size.

View Article and Find Full Text PDF