Publications by authors named "Jenifer K Lum"

The tumor suppressor p53 is a hub protein with a multitude of binding partners, many of which target its intrinsically disordered N-terminal domain, p53-TAD. Partners, such as the N-terminal domain of MDM2, induce formation of local structure and leave the remainder of the domain apparently disordered. We investigated segmental chain motions in p53-TAD using fluorescence quenching of an extrinsic label by tryptophan in combination with fluorescence correlation spectroscopy (PET-FCS).

View Article and Find Full Text PDF

Collapse of unfolded protein chains is an early event in folding. It affects structural properties of intrinsically disordered proteins, which take a considerable fraction of the human proteome. Collapse is generally believed to be driven by hydrophobic forces imposed by the presence of nonpolar amino acid side chains.

View Article and Find Full Text PDF

Several lines of evidence suggest that the prototypical amphipathic transcriptional activators Gal4, Gcn4, and VP16 interact with the key coactivator Med15 (Gal11) during transcription initiation despite little sequence homology. Recent cross-linking data further reveal that at least two of the activators utilize the same binding surface within Med15 for transcriptional activation. To determine whether these three activators use a shared binding mechanism for Med15 recruitment, we characterized the thermodynamics and kinetics of Med15·activator·DNA complex formation by fluorescence titration and stopped-flow techniques.

View Article and Find Full Text PDF

S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments.

View Article and Find Full Text PDF

Significant efforts have been devoted to the development of artificial transcriptional activators for use as mechanistic tools, as therapeutic agents, and for biomanufacturing applications. One of the primary challenges has been the development of artificial activators that exhibit potency in cells comparable to that of endogenous activators; the vast majority function only moderately in the cellular context. Here we demonstrate that the superimposition of two distinct binding modes, a masking interaction and an interaction with the transcriptional machinery, has a profoundly positive effect on the cellular activity of artificial activators, with up to 600-fold enhancement observed.

View Article and Find Full Text PDF

Misregulated transcription is linked to many human diseases, and thus artificial transcriptional activators are highly desirable as mechanistic tools and as replacements for their malfunctioning natural counterparts. We previously reported two artificial transcriptional activation domains obtained from synthetic peptide libraries screened for binding to the yeast transcription protein Med15(Gal11). Here we demonstrate that the transcriptional potency of the Med15 ligands is increased through straightforward structural alterations.

View Article and Find Full Text PDF

The link between a growing number of human diseases and misregulation of gene expression has spurred intense interest in artificial transcriptional activators that could be used to restore controlled expression of affected genes. To expand the repertoire of activation domains available for the construction of artificial transcriptional regulators, a selection strategy was used to identify two unique activation domain motifs. These activation domains bear little sequence homology to endogenous counterparts and bind to unique sites within the transcriptional machinery.

View Article and Find Full Text PDF