Publications by authors named "Jenifer Cuesta Bernal"

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking.

View Article and Find Full Text PDF

Gram-negative Tripartite Resistance Nodulation and cell Division (RND) superfamily efflux pumps confer various functions, including multidrug and bile salt resistance, quorum-sensing, virulence and can influence the rate of mutations on the chromosome. Multidrug RND efflux systems are often characterized by a wide substrate specificity. Similarly to many other RND efflux pump systems, AcrAD-TolC confers resistance toward SDS, novobiocin and deoxycholate.

View Article and Find Full Text PDF

We report the synthesis of a bis(urea) gelator designed to specifically mimic the chemical structure of the highly polymorphic drug substance ROY. Crystallization of ROY from toluene gels of this gelator results in the formation of the metastable red form instead of the thermodynamic yellow polymorph. In contrast, all other gels and solution control experiments give the yellow form.

View Article and Find Full Text PDF

Resistance to β-lactam antibiotics can be mediated by metallo-β-lactamase enzymes (MBLs). An MBL inhibitor could restore the effectiveness of β-lactams. We report on the evaluation of approved thiol-containing drugs as inhibitors of NDM-1, VIM-1, and IMP-7.

View Article and Find Full Text PDF

Background: P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the distribution and function of these ion transporters in mycobacteria are poorly understood.

Results: In this study, probabilistic profiles were constructed based on hidden Markov models to identify and classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC) according to the type of ion transported across the plasma membrane.

View Article and Find Full Text PDF