Publications by authors named "Jeni Bolanos"

Lysine methylation, a posttranslational modification catalyzed by protein lysine methyltransferases (PKMTs), is involved in epigenetics and several signaling pathways, including cell growth, cell migration and stress response, which in turn may participate in virulence of protozoa parasites. , the etiologic agent of human amebiasis, has four PKMTs (EhPKMT1 to EhPKMT4), but their role in parasite biology is unknown. Here, to obtain insight into the role of EhPKMT2, we analyzed its expression level and localization in trophozoites subjected to heat shock and during phagocytosis, two events that are related to amoeba virulence.

View Article and Find Full Text PDF

Protein arginine methylation regulates several cellular events, including epigenetics, splicing, translation, and stress response, among others. This posttranslational modification is catalyzed by protein arginine methyltransferases (PRMTs), which according to their products are classified from type I to type IV. The type I produces monomethyl arginine and asymmetric dimethyl arginine; in mammalian there are six families of this PRMT type (PRMT1, 2, 3, 4, 6, and 8).

View Article and Find Full Text PDF

In this paper, we explored the presence of GATA in Entamoeba histolytica and their function as regulators of phagocytosis-related genes. Bioinformatics analyses evidenced a single 579 bp sequence encoding for a protein (EhGATA), smaller than GATA factors of other organisms. EhGATA appeared phylogenetically close to Dictyostelium discoideum and Schistosoma mansoni GATA proteins.

View Article and Find Full Text PDF

Protein phosphorylation is a posttranslational modification that is essential for normal cellular processes; however, abnormal phosphorylation is one of the prime causes for alteration of many structural, functional, and regulatory proteins in disease conditions. In cancer, changes in the states of protein phosphorylation in tyrosine residues have been more studied than phosphorylation in threonine or serine residues, which also undergo alterations with greater predominance. In general, serine phosphorylation leads to the formation of multimolecular signaling complexes that regulate diverse biological processes, but in pathological conditions such as tumorigenesis, anomalous phosphorylation may result in the deregulation of some signaling pathways.

View Article and Find Full Text PDF

Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of , the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes.

View Article and Find Full Text PDF

Exosomes are endocytic origin small-membrane vesicles secreted to the extracellular space by most cell types. Exosomes released from virus infected-cells can mediate the cell-to-cell communication to promote or modulate viral transmission. Dengue virus (DENV) is an arbovirus transmitted by Aedes mosquitoes bite to humans.

View Article and Find Full Text PDF

is the etiologic agent of human amoebiasis, disease that causes 40,000 to 100,000 deaths annually worldwide. The cytopathic activity as well as the growth and differentiation of this microorganism is dependent on both, extracellular and free cytoplasmic calcium. However, few is known about the proteins that regulate the calcium flux in this parasite.

View Article and Find Full Text PDF

Entamoeba histolytica, the highly phagocytic protozoan causative of human amoebiasis lacks the machinery to synthesize cholesterol. Here, we investigated the presence of NPC1 and NPC2 proteins in this parasite, which are involved in cholesterol trafficking in mammals. Bioinformatics analysis revealed one Ehnpc1 and two Ehnpc2 genes.

View Article and Find Full Text PDF