Publications by authors named "Jeng-fan Lo"

Background: Sarcopenic obesity is characterized by excess fat mass and diminished muscular mass/function. DNAJA3, a mitochondrial co-chaperone protein, plays a crucial role in skeletal muscle development. GMI, an immunomodulatory protein, promotes myogenic differentiation through DNAJA3 activation.

View Article and Find Full Text PDF

Background And Aims: NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC.

View Article and Find Full Text PDF

Background: DnaJ homolog subfamily A member 3 (DNAJA3), also known as the tumorous imaginal disc (Tid1), is shown to be crucial in T cell development. DNAJA3 functions as a tumor suppressor implicated in lymphocyte development and survival. However, the role of DNAJA3 in B cell development and immune function remains unknown.

View Article and Find Full Text PDF

(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancers (TNBCs) are challenging to treat due to their association with cancer stem cells (CSCs), and the role of Thoc1 in TNBC is not well understood.
  • Knocking down Thoc1 in TNBC cells reduces CSC populations and tumor growth, indicating its potential as a drug target.
  • The natural compound andrographolide shows promise in lowering Thoc1 expression, impairing CSC properties, and delaying tumor progression in an animal model, highlighting its potential as a treatment strategy.
View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) is a type of malignancy characterized by high relapse and recurrence rates in the late stage despite optimal surgical intervention and postoperative chemoradiotherapy. Because the management of relapse following definitive treatment is challenging, accurate risk stratification is of clinical significance to improve treatment outcomes. Circular RNAs (circRNAs) are noncoding RNAs featured with cell-type specificity and high stability, owing to their circular structure, making these molecules excellent biomarkers for a variety of diseases.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models.

View Article and Find Full Text PDF

Recent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated.

View Article and Find Full Text PDF

Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood.

View Article and Find Full Text PDF

Tid1, a mitochondrial co-chaperone protein, acts as a tumor suppressor in various cancer types. However, the role of Tid1 in hepatocellular carcinoma (HCC) remains unclear. First, we found that a low endogenous Tid1 protein level was observed in poorly differentiated HCC cell lines.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes.

View Article and Find Full Text PDF

Ageing and chronic diseases lead to muscle loss and impair the regeneration of skeletal muscle. Thus, it's crucial to seek for effective intervention to improve the muscle regeneration. Tid1, a mitochondrial co-chaperone, is important to maintain mitochondrial membrane potential and ATP synthesis.

View Article and Find Full Text PDF

Background: Gastric cancer is a common health issue. Deregulated cellular energetics is regarded as a cancer hallmark and mitochondrial dysfunction might contribute to cancer progression. Tid1, a mitochondrial co-chaperone, may play a role as a tumor suppressor in various cancers, but the role of Tid1 in gastric cancers remains under investigated.

View Article and Find Full Text PDF

As of April 15, 2020, the US Food and Drug Administration has granted emergency use authorization to a first saliva test for diagnosis of severe acute respiratory syndrome coronavirus 2 infection, the device developed by RUCDR Infinite Biologics laboratory, Rutgers University. A key feature that distinguishes the saliva-based test from nasopharyngeal or oropharyngeal (throat) swabs is that this kit allows self-collection and can spare healthcare professionals to be at risk during collecting nasopharyngeal or oropharyngeal samples, thereby preserving personal protective equipment for use in patient care rather than sampling and testing. Consequently, broader testing than the current methods of nasal or throat swabs will significantly increase the number of people screening, leading to more effective control of the spread of COVID-19.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a highly lethal disease with high-level of epidemic both in the world and Taiwan. Previous studies support that head and neck cancer-initiating cells (HN-CICs), a subpopulation of cancer cells with enhanced stemness properties, contribute to therapy resistance and tumor recurrence. Arsenic trioxide (AsO; ATO) has shown to be an effective anti-cancer drug targeting acute promyelocytic leukemia (APL).

View Article and Find Full Text PDF

Up-regulation of ASB6 has been previously associated with late-stage and poor prognosis of oral squamous cell carcinoma (OSCC) patients. To explore the cellular and molecular basis of how ASB6 enhances the malignancy of OSCC, we employed the clonogenicity and migration assays, murine pulmonary metastasis model, Western blot, and immunofluorescence microscopy to characterize the phenotypes of OSCC cells with lentiviral-based stable overexpression or knockdown of ASB6. We found that ASB6 overexpression increases, whereas ASB6 knockdown decreases, the potential of tumor-sphere formation, colony formation, and expression of Oct-4 and Nanog.

View Article and Find Full Text PDF

Primary liver cancer (PLC) is heterogeneous and it is an aggressive malignancy with a poor prognostic outcome. Current evidence suggests that PLC tumorigenesis is driven by rare subpopulations of cancer stem cells (CSCs), which contribute to tumor initiation, progression, and therapy resistance through particular molecular mechanisms. Energy metabolism and mitochondrial function play an important role in the regulation of cancer stemness and stem cell specifications.

View Article and Find Full Text PDF

Even with increasing evidence for roles of glycolytic enzymes in controlling cancerous characteristics, the best target of candidate metabolic enzymes for lessening malignancy remains under debate. Pyruvate is a main glycolytic metabolite that could be mainly converted into either lactate by Lactate Dehydrogenase A (LDHA) or acetyl-CoA by Pyruvate Dehydrogenase E1 component α subunit (PDHA1) catalytic complex. In tumor cells, accumulating lactate is produced whereas the conversion of pyruvate into mitochondrial acetyl-CoA is less active compared with their normal counterparts.

View Article and Find Full Text PDF

Myocardial dysfunction is clinically relevant? repercussion that follows sepsis. Tid 1 protein has been implicated in many biological process. However, the role of Tid 1 in lipopolysaccharide (LPS)-induced cardiomyocyte hypertrophy and apoptosis remains elusive.

View Article and Find Full Text PDF

Carboxyl-terminus of Hsc70 interacting protein (CHIP) is a chaperone-dependent E3-ubiquitin ligase with important function in protein quality control system. In the current research endeavor, we have investigated the putative role of CHIP in lipopolysaccharides (LPS)-induced cardiomyopathies. Basically, H9c2 cardiomyoblasts were transfected with CHIP for 24 hr, and thereafter, treated with LPS for 12 hr.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is the most common form of non-ischemic cardiomyopathy. It is characterized by ventricular chamber dilation, and myocyte hypertrophy. Human tumorous imaginal disc 1 (Tid1), a chaperone protein and response to regulate number of signaling molecules in the mitochondria or cytosol.

View Article and Find Full Text PDF

Human tumorous imaginal disc (Tid1), a DnaJ co-chaperone protein, is classified as a tumor suppressor. Previously, we demonstrated that Tid1 reduces head and neck squamous cell carcinoma (HNSCC) malignancy. However, the molecular details of Tid1-mediated anti-metastasis remain elusive.

View Article and Find Full Text PDF

Cancer-initiating cells (CICs) are responsible for tumor initiation, progression, and therapeutic resistance; moreover, redox homeostasis is important in regulating cancer stemness. Previously, we have identified that cancer cells containing low intracellular reactive oxygen species levels (ROS cells) display enhanced features of CICs. However, the specific metabolic signatures of CICs remain unclear and are required for further characterization by systemic screenings.

View Article and Find Full Text PDF

Background: Tid1 is a mitochondrial co-chaperone protein and its transcript is abundantly expressed in skeletal muscle tissues. However, the physiological function of Tid1 during skeletal myogenesis remains unclear.

Methods: In vitro induced differentiation assay of mouse myoblast C2C12 cells was applied to examine the physiological role of Tid1 during skeletal myogenesis.

View Article and Find Full Text PDF